脂肪

脂肪
09-07-09  匿名提问 发布
2个回答
时间
投票
  • 0

    qeqr4

    "脂肪
      英语名词:fat
      注音:zhī fáng
    [编辑本段]脂肪的概念
      脂类是油、脂肪、类脂的总称。食物中的油脂主要是油和脂肪,一般把常温下是液体的称作油,而把常温下是固体的称作脂肪。脂肪所含的化学元素主要是C、H、O。
      脂肪是由甘油和脂肪酸组成的三酰甘油酯,其中甘油的分子比较简单,而脂肪酸的种类和长短却不相同。因此脂肪的性质和特点主要取决于脂肪酸,不同食物中的脂肪所含有的脂肪酸种类和含量不一样。自然界有40多种脂肪酸,因此可形成多种脂肪酸甘油三酯。脂肪酸一般由4个到24个碳原子组成。脂肪酸分三大类:饱和脂肪酸、单不饱和脂肪酸、多不饱和脂肪酸。
      脂肪在多数有机溶剂中溶解,但不溶解于水。
    [编辑本段]脂类的分类
      脂肪是甘油和三分子脂肪酸合成的甘油三酯。
      (1)中性脂肪:即甘油三脂,是猪油,花生油,豆油,菜油,芝麻油的主要成分
      (2)类脂包括磷脂:卵磷脂、脑磷脂、肌醇磷脂。
      糖脂:脑苷脂类、神经节昔脂。
      脂蛋白:乳糜微粒、极低密度脂蛋白、低密度脂蛋白、高密度脂蛋白。
      类固醇:胆固醇、麦角因醇、皮质甾醇、胆酸、维生素D、雄激素、雌激素、孕激素。
      在自然界中,最丰富的是混合的甘油三酯,在食物中占脂肪的98%,在身体中占如28%以上。所有的细胞都含有磷脂,它是细胞膜和血液中的结构物,在脑、神经、肝中含量特别高,卵磷脂是膳食和体内最丰富的磷脂之一。四种脂蛋白是血液中脂类的主要运输工具。
    [编辑本段]脂肪的生物功能
      脂类是指一类在化学组成和结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂中的物质。通常脂类可按不同组成分为五类,即单纯脂、复合脂、萜类和类固醇及其衍生物、衍生脂类及结合脂类。
      脂类物质具有重要的生物功能。脂肪是生物体的能量提供者。
      脂肪也是组成生物体的重要成分,如磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。脂类物质也可为动物机体提供溶解于其中的必需脂肪酸和脂溶性维生素。某些萜类及类固醇类物质如维生素A、D、E、K、胆酸及固醇类激素具有营养、代谢及调节功能。有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。脂类作为细胞的表面物质,与细胞识别,种特异性和组织免疫等有密切关系。
      概括起来,脂肪有以下几方面生理功能:
      1. 生物体内储存能量的物质并供给能量 1克脂肪在体内分解成二氧化碳和水并产生38KJ(9Kcal)能量,比1克蛋白质或1克碳水化合物高一倍多。
      2. 构成一些重要生理物质,脂肪是生命的物质基础 是人体内的三大组成部分(蛋白质、脂肪、碳水化合物)之一。 磷脂、糖脂和胆固醇构成细胞膜的类脂层,胆固醇又是合成胆汁酸、维生素D3和类固醇激素的原料。
      3. 维持体温和保护内脏、缓冲外界压力 皮下脂肪可防止体温过多向外散失,减少身体热量散失, 维持体温恒定。也可阻止外界热能传导到体内,有维持正常体温的作用。内脏器官周围的脂肪垫有缓冲外力冲击保护内脏的作用。减少内部器官之间的摩擦 。
      4. 提供必需脂肪酸。
      5. 脂溶性维生素的重要来源 鱼肝油和奶油富含维生素A、D,许多植物油富含维生素E。脂肪还能促进这些脂溶性维生素的吸收。
      6.增加饱腹感 脂肪在胃肠道内停留时间长,所以有增加饱腹感的作用。
    [编辑本段]脂肪的生物降解
      在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。甘油经磷酸化和脱氢反应,转变成磷酸二羟丙酮,纳入糖代谢途径。脂肪酸与ATP和CoA在脂酰CoA合成酶的作用下,生成脂酰CoA。脂酰CoA在线粒体内膜上肉毒碱:脂酰CoA转移酶系统的帮助下进入线粒体衬质,经β-氧化降解成乙酰CoA,在进入三羧酸循环彻底氧化。β-氧化过程包括脱氢、水合、再脱氢和硫解四个步骤,每次β-氧化循环生成FADH2、NADH、乙酰CoA和比原先少两个碳原子的脂酰CoA。此外,某些组织细胞中还存在α-氧化生成α羟脂肪酸或CO2和少一个碳原子的脂肪酸;经ω-氧化生成相应的二羧酸。
      萌发的油料种子和某些微生物拥有乙醛酸循环途径。可利用脂肪酸β-氧化生成的乙酰CoA合成苹果酸,为糖异生和其它生物合成提供碳源。乙醛酸循环的两个关键酶是异柠檬酸裂解酶和苹果酸合成酶前者催化异柠檬酸裂解成琥珀酸和乙醛酸,后者催化乙醛酸与乙酰CoA生成苹果酸。
    [编辑本段]脂肪的生物合成
      脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。脂肪酸从头合成的场所是细胞液,需要CO2和柠檬酸的参与,C2供体是糖代谢产生的乙酰CoA。反应有二个酶系参与,分别是乙酰CoA羧化酶系和脂肪酸合成酶系。首先,乙酰CoA在乙酰CoA羧化酶催化下生成,然后在脂肪酸合成酶系的催化下,以ACP作酰基载体,乙酰CoA为C2受体,丙二酸单酰CoA为C2供体,经过缩合、还原、脱水、再还原几个反应步骤,先生成含4个碳原子的丁酰ACP,每次延伸循环消耗一分子丙二酸单酰CoA、两分子NADPH,直至生成软脂酰ACP。产物再活化成软脂酰CoA,参与脂肪合成或在微粒体系统或线粒体系统延长成C18、C20和少量碳链更长的脂肪酸。在真核细胞内,饱和脂肪酸在O2的参与和专一的去饱和酶系统催化下,进一步生成各种不饱和脂肪酸。高等动物不能合成亚油酸、亚麻酸、花生四烯酸,必须依赖食物供给。
      3-磷酸甘油与两分子脂酰CoA在磷酸甘油转酰酶作用下生成磷脂酸,在经磷酸酶催化变成二酰甘油,最后经二酰甘油转酰酶催化生成脂肪。
    [编辑本段]脂肪的供给量和来源
      脂肪的供给量
      脂肪无供给量标准。不同地区由于经济发展水平和饮食习惯的差异,脂肪的实际摄入量有很大差异。我国营养学会建议膳食脂肪供给量不宜超过总能量的30%,其中饱和、单不饱和、多不饱和脂肪酸的比例应为1:1:1。亚油酸提供的能量能达到总能量的1%~2%即可满足人体对必需脂肪酸的需要。
      脂肪的来源
      脂肪的主要来源是烹调用油脂和食物本身所含的油脂。表5是几种食物中的脂肪含量。从下表内的数字可见,果仁脂肪含量最高,各种肉类居中,米、面、蔬菜、水果中含量很少。
    [编辑本段]脂肪营养价值的评定
      营养学上根据以下三项指标评价一种脂肪的营养价值:
      1. 消化率 一种脂肪的消化率与它的熔点有关,含不饱和脂肪酸越多熔点越低,越容易消化。因此,植物油的消化率一般可达到100%。动物脂肪,如牛油、羊油,含饱和脂肪酸多,熔点都在40℃以上,消化率较低,约为80%~90%。
      2. 必需脂肪酸含量 植物油中亚油酸和亚麻酸含量比较高,营养价值比动物脂肪高。
      3. 脂溶性维生素含量 动物的贮存脂肪几乎不含维生素,但肝脏富含维生素A和D,奶和蛋类的脂肪也富含维生素A和D。植物油富含维生素E。这些脂溶性维生素是维持人体健康所必需的。
    [编辑本段]脂肪有关疾病
      脂肪肝是肝脏内的脂肪含量超过肝脏重量(湿重)的5%。近几年来,脂肪肝发病率有不断上升的趋势,已成为一种临床常见病。
    [编辑本段]脂肪的测定方法
      第一法 索氏抽提法
      1 原理
      样品用无水乙醚或石油醚等溶剂抽提后,蒸去溶剂所得的物质,在食品分析上称为脂肪或粗脂肪。因为除脂肪外,还含色素及挥发油、蜡、树脂等物。抽提法所测得的脂肪为游离脂肪。
      2 试剂
      2.1 无水乙醚或石油醚。
      2.2 海砂:食品中水分的测定
      3 仪器
      索氏提取器。
      4 操作方法
      4.1 样品处理
      4.1.1 固体样品:精密称取2~5g(可取测定水分后的样品),必要时拌以海砂,全部移入滤纸筒内。
      4.1.2 液体或半固体样品:称取5.0~10.0g,置于蒸发皿中,加入海砂约20g于沸水浴上蒸干后,再于95~105℃干燥,研细,全部移入滤纸筒内。蒸发皿及附有样品的玻棒,均用沾有乙醚的脱脂棉擦净,并将棉花放入滤纸筒内。
      4.2 抽提
      将滤纸筒放入脂肪抽提器的抽提筒内,连接已干燥至恒量的接受瓶,由抽提器冷凝管上端加入无水乙醚或石油醚至瓶内容积的2/3处,于水浴上加热,使乙醚或石油醚不断回流提取,一般抽取6~12h。
      4.3 称量
      取下接受瓶,回收乙醚或石油醚,待接受瓶内乙醚剩1~2mL时在水浴上蒸干,再于,95~105℃干燥2h,放干燥器内冷却0.5h后称量。
      4.4 计算
      m1-m0
      X = ─────── × 100
      m2
      式中,X--样品中脂肪的含量,%;
      m1--接受瓶和脂肪的质量,g;
      m0--接受瓶的质量,g;
      m2--样品的质量(如是测定水分后的样品,按测定水分前的质量计),g。
      第二法 酸水解法
      1 原理
      样品经酸水解后用乙醚提取,除去溶剂即得游离及结合脂肪总量。
      2 试剂
      2.1 盐酸
      2.2 95%乙醇。
      2.3 乙醚。
      2.4 石油醚。
      3 仪器
      100mL具塞刻度量筒。
      4 操作方法
      4.1 样品处理
      4.1.1 固体样品:精密称取约2g,置于50mL大试管内,加8mL水,混匀后再加10mL盐酸。
      4.1.2 液体样品:称取10.0g,置于50mL大试管内,加10mL盐酸。 
      4.2 将试管放入70~80℃水浴中,每隔5~10min以玻璃棒搅拌一次,至样品消化完全为
      止,约40~50min。
      4.3 取出试管,加入10mL乙醇,混合。冷却后将混合物移于100mL具塞量筒中,以25mL乙
      醚分次洗试管,一并倒入量筒中。待乙醚全部倒入量筒后,加塞振摇1min,小心开塞,放
      出气体,再塞好,静置12min,小心开塞,并用石油醚-乙醚等量混合液冲洗塞及筒口附着
      的脂肪。静置10~20min,待上部液体清晰,吸出上清液于已恒量的锥形瓶内,再加5mL乙
      醚于具塞量筒内,振摇,静置后,仍将上层乙醚吸出,放入原锥形瓶内。将锥形瓶置水浴
      上蒸干,置95~l05℃烘箱中干燥2h,取出放干燥器内冷却0.5h后称量。
      4.4 计算
      第三法 盖勃法
      吸收10ml硫酸(90%),注入盖勃氏乳脂汁内,用1lml的特别牛乳吸管吸取牛乳样品至刻度并注入乳脂汁内,再加入1ml异戊醇,塞紧橡皮塞,充分摇动,使牛乳凝块溶解。将乳脂计放入65~700C的水浴锅中5min,再以1000r/min旋转5min后,放置65~70℃水浴锅中;5min后取出擦干,按脂肪柱上刻度处的凹形面底缘读数,即为脂肪的百分数。
      第四法 罗兹法
      原理: (1)在牛奶中加入氨水(浓氨水)破坏牛奶中蛋白质的胶体性质,使乳中酪蛋白钙盐生成可溶性的氨盐。(2)加入 95%乙醇使乳中脂类与非脂类分离。(3)加入乙醚抽取脂类。(4)加入石油醚除去乙醚中包容的水分。(5)到出醚层,挥发除去乙醚、石油醚;剩下的脂肪即为牛奶中的脂肪。
      4.检测步骤:
      (1) 用电子天平精确称取 10g均匀牛奶样(奶粉 1克用 9毫升蒸馏水溶解分次洗于)于毛氏抽脂瓶中.
      (2) 加入 2ml 浓氨水,充分混匀。
      (3) 加入 10ml95%乙醇,加入 2滴刚果红,充分混匀。
      (4) 加入 25ml 乙醚,振摇 1分钟,100次/1分钟,振摇过程中要放气 1-2次,用混合液洗瓶塞。
      (5) 加入 25ml 石油醚,振摇半分钟,振摇过程中放气 1-2次,用混合液洗瓶塞后静置半小时。
      (6) 小心地将静置后的醚层倒入三角瓶(洗净、烘干 1.5小时后,天平室内无尘,自然冷却 1小时,称重m1 )中,并用混合试剂洗瓶颈。
      (7) 再向毛氏抽脂瓶中加入 5ml乙醇,充分摇匀。
      (8) 加入 15ml 乙醚,振摇 100次/1分钟,用混合试剂洗瓶塞。加入15ml石油醚振摇半分钟,用混合试剂洗瓶塞,静置半小时。
      (9) 将静置后的醚层再倒入三角瓶中,并用混合试剂洗瓶颈。
      (10) 将两次抽提的醚液(在三角瓶内),于 30-60℃,水浴锅中,在通风橱里挥发除去乙醚、石油醚。
      (11) 将剩有脂肪的三角瓶放 98-100℃烘箱中烘 1.5小时,至恒重,取出在天平室内无尘自然冷却 1小时后称重m2.
      5.计算:
      m2-m1
      脂肪含量%=---------×100
      M
      式中:m2——脂肪和空三角瓶重(g)
      m1——空三角瓶重(g)
      M——称取牛奶质量(g)
      第五法 FT120测定
      第六法 苏丹三鉴定法
      (1)把材料用切片机切成1MM的小薄片,并移至洁净的载玻片上
      (2)用滴管滴加2~3滴苏丹三染液,染色2~3min后用吸水纸吸去染液并滴加1~2滴50%的酒精洗去浮色再吸去酒精
      (3)滴加1~2滴蒸馏水后盖上盖玻片在显微镜下观察
      (4)橘黄色的小颗粒即为脂肪
    [编辑本段]脂肪的临床意义
      正常人每天从粪便中排出的脂肪占干燥粪便量的10%~15%其中含有结合脂肪酸(5%~15%)、游离脂肪酸(5%~13%)、中性脂肪(1%~5%)正常乳儿的粪便较成人粪便中脂肪含量高50%,幼儿粪便中的脂肪含量也高30%,且以中性脂肪为主。 脂肪正常值: 约2~5g/24h 。
      中性脂肪在显微镜下呈大小不一的光亮圆形小球状腹泻病人的粪便中的脂肪排出增多,镜下超过6个脂肪滴/HP。当脂肪消化吸收不良时粪便中脂肪滴大量增多。
      在阻塞性黄疸时因肠道中胆汁缺乏,有脂肪吸收障碍时,粪便中出现大量的脂肪酸。胰液分泌机能不全,致使消化功能障碍时,则粪便中可出现大量的中性脂肪(脂肪泻)。
    [编辑本段]脂肪过量表现
      脂肪摄入过量将产生肥胖,并导致一些慢性病的发生;膳食脂肪总量增加,还会增大某些癌症的发生几率。
    [编辑本段]缺乏症
      必需脂肪酸缺乏,可引起生长迟缓、生殖障碍、皮肤受损等;另外,还可引起肝脏、肾脏、神经和视觉等多种疾病。
    [编辑本段]食物来源
      除食用油脂含约100%的脂肪外,含脂肪丰富的食品为动物性食物和坚果类。动物性食物以畜肉类含脂肪最丰富,且多为饱和脂肪酸;一般动物内脏除大肠外含脂肪量皆较低,但蛋白质的含量较高。禽肉一般含脂肪量较低,多数在10%以下。鱼类脂肪含量基本在10%以下,多数在5%左右,且其脂肪含不饱和脂肪酸多。蛋类以蛋黄含脂肪最高,约为30%左右,但全蛋仅为10%左右,其组成以单不饱和脂肪酸为多。
      除动物性食物外,植物性食物中以坚果类含脂肪量最高,最高可达50%以上,不过其脂肪组成多以亚油酸为主,所以是多不饱和脂肪酸的重要来源。
    "

    09-07-09 | 添加评论 | 打赏

    评论读取中....

  • 0

    天使加慧

    脂类的概念
      由脂肪酸和醇作用生成的酯及其衍生物统称为脂类,这是一类一般不溶于水而溶于脂溶性溶剂的化合物。
      不溶于水而能被乙醚、氯仿、苯等非极性有机溶剂抽提出的化合物,统称脂类。
      脂类包括油脂(甘油三脂)和类脂(磷脂、蜡、萜类、甾类)。
      脂类是机体内的一类有机大分子物质,它包括范围很广,其化学结构有很大差异,生理功能各不相同,其共同理化性质是不溶于水而溶于有机溶剂,在水中可相互聚集形成内部疏水的聚集体(如右图)。
    [编辑本段]脂类的分类
      粗分
      脂类分为两大类,即油脂(fat)和类脂(lipids)
      1. 油脂:即甘油三脂或称之为脂酰甘油(triacylglycerol),是油和脂肪的统称。一般把常温下是液体的称作油,而把常温下是固体的称作脂肪。它是由1分子甘油与3个分子脂肪酸通过酯键相结合而成。油脂分布十分广泛,各种植物的种子、动物的组织和器官中都存在一定数量的油脂,特别是油料作物的种子和动物皮下的脂肪组织,油脂含量丰富。人体中的脂肪约占体重的10%~20%。人体内脂肪酸种类很多,生成甘油三脂时可有不同的排列组合,因此,甘油三脂具有多种形式。贮存能量和供给能量是脂肪最重要的生理功能。1克脂肪在体内完全氧化时可释放出38kJ(9.3kcal),比1克糖原或蛋白质所放出的能量多两倍以上。脂肪组织是体内专门用于贮存脂肪的组织,当机体需要时,脂肪组织中贮存在脂肪可动员出来分解供给机体能量。此外,脂肪组织还可起到保持体温,保护内脏器官的作用。
      2. 类脂:包括磷脂(phospholipids),糖脂(glycolipid)和胆固醇及其酯(cholesterol and cholesterol ester)三大类。磷脂是含有磷酸的脂类,包括由甘油构成的甘油磷脂(phosphoglycerides)和由鞘氨醇构成的鞘磷脂(sphingomyelin)。糖脂是含有糖基的脂类。这三大类类脂是生物膜的主要组成成分,构成疏水性的“屏障”(barrier),分隔细胞水溶性成分和细胞器,维持细胞正常结构与功能。此外,胆固醇还是脂肪酸盐和维生素D3以及类固醇激素合成的原料,对于调节机体脂类物质的吸收,尤其是脂溶性维生素(A,D,E,K)的吸收以及钙磷代谢等均起着重要作用。
      细分(按化学组成分)
      1.单纯脂:定义:脂肪酸与醇脱水缩合形成的化合物
      蜡:高级脂肪酸与高级一元醇,幼植物体表覆盖物,叶面,动物体表覆盖物,蜂蜡。
      甘油脂:高级脂肪酸与甘油,最多的脂类。
      2.复合脂:定义:单纯脂加上磷酸等基团产生的衍生物
      磷脂:甘油磷脂(卵、脑磷脂)、鞘磷脂(神经细胞丰富)
      3.脂的前体及衍生物
      萜类和甾类及其衍生物:不含脂肪酸,都是异戊二烯的衍生物。
      衍生脂:上述脂类的水解产物,包括脂肪酸及其衍生物、甘油、鞘氨醇等。
      高级脂肪酸、甘油、固醇、前列腺素
      4.结合脂:定义:脂与其它生物分子形成的复合物
      糖脂:糖与脂类以糖苷键连接起来的化合物(共价键),如霍乱毒素
      脂蛋白:脂类与蛋白质非共价结合的产物如血中的几种脂蛋白,VLDL、LDL、HDL、VHDL是脂类的运输方式。
    [编辑本段]脂质化学结构
      脂质(Lipids)又称脂类,是脂肪及类脂的总称.这是一类不溶于水而易溶于脂肪溶剂(醇、醚、氯仿、苯)等非极性有机溶剂。并能为机体利用的重要有机化合物。脂质包括的范围广泛,其分类方法亦有多种。通常根据脂质的主要组成成分分为:简单脂质、复合脂质、衍生脂质、不皂化脂类。
      一、简单脂质
      简单脂质是脂肪酸与各种不同的醇类形成的酯,简单脂质包括酰基甘油酯和蜡。
      (一)酰基甘油酯
      酰基甘油酯又称脂肪是以甘油为主链的脂肪酸酯。如三酰基甘油酯的化学结构为甘油分子中三个羟基都被脂肪酸酯化,故称为甘油三酯(triglyceride)或中性脂肪。甘油分子本身无不对称碳原子。但它的三个羟基可被不同的脂肪酸酯化,则甘油分子的中间一个碳原子是一个不对称原子,因而有两种不同的构型(L-构型和D-构型)。天然的甘油三酯都是L-构型。酰基甘油酯分为甘油一酯、甘油二酯、甘油三酯、烷基醚(或α、β烯基醚)酰基甘油酯。
      (二)蜡
      蜡(waxes)是不溶于水的固体,是高级脂肪酸和长链一羟基脂醇所形成的酯,或者是高级脂肪酸甾醇所形成的酯。常见有真蜡、固醇蜡等。
      真蜡是一类长链一元醇的脂肪酸酯。
      固酯蜡是固醇与脂肪酸形成的酯,如维生素A酯、维生素D酯等。
      二、复合脂质
      复合脂质(complx lipids)即含有其他化学基团的脂肪酸酯,体内主要含磷脂和糖脂两种复合脂质。
      (一)磷脂
      磷脂(phospholipid)是生物膜的重要组成部分,其特点是在水解后产生含有脂肪酸和磷酸的混合物。根据磷脂的主链结构分为磷酸甘油反和鞘磷脂。
      1.磷酸甘油酯(phosphoglycerides)主链为甘油-3-磷酸,甘油分子中的另外两个羟基都被脂肪酸所酯化,噒酸基团又可被各种结构不同的小分子化合物酯化后形成各种磷酸甘油酯。体内含量较多的是磷脂酰胆碱(卵磷脂)、磷脂酰乙醇胺(脑磷脂)、磷脂酰丝氨酸、磷脂酰甘油、二磷脂酰甘油(心磷酯)及磷酯酰肌醇等,每一磷脂可因组成的脂肪酸不同而有若干种。
      从分子结构可知甘油分子的中央原子是不对称的。因而有不同的立体构型。天然存在的磷酸甘油酯都具有相同的主体化学构型。按照化学惯例。这些分子可以用二维投影式来表示。D-和L甘油醛的构型就是根据其X射线结晶学结果确定的。右旋为D构型,左旋为L构型。磷酸甘油酯的立化化学构型及命名由此而确定。
      2.鞘磷脂(sphingomyelin)鞘磷脂是含硝氨醇或二氢鞘氨醇的磷脂,其分子不含甘油,是一分子脂肪酸以酰胺键与鞘氨醇的氨基相连。鞘氨醇或二氢鞘氨醇是具有脂肪族长链的氨基二元醇。有疏水的长链脂肪烃基尾和两个羟基及一个氨基的极性头。
      鞘磷脂含磷酸,其末端痉基取代基团为磷酸胆碱酸乙醇胺。人体含量最多的鞘磷脂是神经鞘磷脂,由鞘氨醇、脂肪酸及磷酸胆碱构成。神经鞘磷酯是构成生物膜的重要磷酯。它常与卵磷脂并存细胞膜外侧。
      (二)糖脂
      糖脂(glycolipids)这是一类含糖类残基的复合脂质化学结构各不相同的脂类化合物,且不断有糖脂的新成员被发现。糖脂亦分为两大类:糖基酰甘油和糖鞘脂。糖鞘脂又分为中性糖鞘脂和酸性糖鞘脂。
      1.糖基酰基甘油(glycosylacylglycerids),糖基酰甘油结构与磷脂相类似,主链是甘油,含有脂肪酸,但不含磷及胆碱等化合物。糖类残基是通过糖苷键连接在1,2-甘油二酯的C-3位上构成糖基甘油酯分子。已知这类糖脂可由各种不同的糖类构成它的极性头。不仅有二酰基油酯,也有1-酰基的同类物。
      自然界存在的糖脂分子中的糖主要有葡萄糖、半乳糖,脂肪酸多为不饱和脂肪酸。根据国际生物化学名称委员会的命名:单半乳糖基甘油二酯和二半乳糖基甘油二酯的结构分别为1,2-二酰基-3-O-β-D-吡喃型半乳糖基-甘油和1,2-二酰基-3-O-(α-D-吡喃型半乳糖基(1→6)-O-β-D吡喃型半乳糖基)-甘油。
      此外,还有三半乳糖基甘油二酯,6-O-酰基单半乳糖基甘油二酯等。
      2.糖硝脂(glycosphingolipids) 有人将此类物质列为鞘脂和鞘磷脂一起讨论,故又称鞘糖脂。糖鞘脂分子母体结构是神经酰胺。脂肪酸连接在长链鞘氨醇的C-2氨基上,构成的神经酰胺糖类是糖鞘脂的亲水极性头。含有一个或多个中性糖残基作为极性头的糖鞘脂类称为中性糖鞘脂或糖基神经酰胺,其极性头带电荷,最简单的脑苷脂是在神羟基上,以β糖苷链接一个糖基(葡萄糖或半乳糖)。
      重要的糖鞘脂有脑苷脂和神经节苷脂。脑苷在脑中含量最多,肺、肾次之,肝、脾及血清也含有。脑中的脑苷脂主要是半乳糖苷脂,其脂肪酸主要为二十四碳脂酸;而血液中主要是葡萄糖脑苷脂神经节苷脂是一类含唾液酸的酸性糖鞘酯。唾液酸又称为N-乙酰神经氨酸它通过α-糖苷键与糖脂相连。神经节苷脂分子由半乳糖(Gal)、N-乙酰半乳糖(GalNAc)、葡萄糖(Glc)、N-脂酰硝氨醇(Cer)、唾液酸(NeuAc)组成。神经节苷脂广泛分布于全身各组织的细胞膜的外表面,以脑组织最丰富。
      三、衍生脂质
      1.脂肪酸及其衍生物前列腺素等。
      2.长链脂肪醇,如鲸蜡醇等。
      四、不皂化的脂质
      不皂化的脂质是一类不含脂肪酸的脂质。主要有类萜及类固醇。
      (一)类萜(terpens)
      类萜亦称异戊烯脂质。异戊烯是具有两个双键的五碳化合物,也叫做“2-甲基-1.3-丁二烯“。其结构式为:
      CH3
      |
      CH2 = C-CH=CH2。
      烯萜类化合物就是很多异戊二烯单位缩合体。两个异戊二烯单位头尾连接就形成单萜;含有4个、6个和8个异戊二烯单位的萜类化合物分别称为双萜、三萜或四萜。异戊二烯单位以头尾连接排列的是规则排列;相反尾尾连接的是不规则排列。两个一个半单萜以尾尾排列连接形成三萜,如鲨烯;两个双萜尾尾连接四萜,如β-胡罗卜素。还有些类萜化合物是环状化合物,有遵循头尾相连的规律,也有不遵循头尾相连的规律。另外还有一些化合物尽管与类萜有密切有关系,但其结构式并不是五碳单位的偶数倍数;例如莰稀是具有二环结构的单萜,结构相似的檀烯却缺少一个碳原子。异戊烯脂质包括多种结构不同物质,对这些自然界存在的复杂结构的物质给予系统的命名是困难的。现习惯上沿用的名称多来自该化合物的原料来源,更显得杂乱无章。
      天然的异戊烯聚合物与其他多聚物的共同点为:①由具有通用结构的重复单位所组成(异戊烯骨架相当于糖,氨基酸或核苷酸单位);②此单位的结构在细节上可有所变动(例如在类异戊二烯中的双键)并按顺序排列;③链长变化极大,小到两个单位聚合而成单萜,多至数百倍的单位聚合而成的橡胶。不同点为:①重复单位以C-C键连接在一起;②相对地说它们是非极性的,属于脂质。异戊烯脂质一旦聚合,就不能再裂解回复到单体形式。
      (二)类固醇
      类固醇(steroid)是环戊稠全氢化菲的衍生物。天然的类固醇分子中的双键数目和位置,取代基团的类型、数目和位置,取代基团与环状核之间的构型,环与环之间的构型各不相同。其化学结构是由三个六碳环已烷(A、B、C)和一个五碳环(D)组成的稠和回环化合物。类固醇分子中的每个碳原子都按序编号,且不管任一位置有没有碳原子存在,在类固醇母体骨架结构中都保留该碳原子的编号。存在于自然界的类固醇分子中的六碳环A、B、C都呈“椅”式构象(环已结构),这也是最稳定的构象。唯一的例外是雌激素分子内的A环是芳香环为平面构象。类固醇的A环和B环之间的接界可能是顺式构型,也可能是反式构型;而C环与D环接界一般都是反式构型,但强心苷和蟾毒素是例外。
    [编辑本段]脂类的功能
      脂类的生物学功能也多种多样:
      1.最佳的能量储存方式
      能量贮存形式(动物、油料种子的甘油三酯)
      体内的两种能源物质比较
      单位重量的供能:糖4.1千卡/克,脂9.3千卡/克。
      储存体积:1糖元或淀粉:2水,脂则是纯的,体积小得多。
      动用先后:糖优先,关于减肥和辟谷
      2.生物膜的骨架:细胞膜的液态镶嵌模型:磷脂双酯层,胆固醇,蛋白质,糖脂,甘油磷脂和鞘磷脂。
      3.电与热的绝缘体
      动物的脂肪组织有保温,防机械压力等保护功能,植物的蜡质可以防止水分的蒸发。
      电绝缘:神经细胞的鞘细胞,电线的包皮,神经短路
      热绝缘:冬天保暖,企鹅、北极熊
      4.信号传递:固醇类激素
      5.酶的激活剂:卵磷脂激活β-羟丁酸脱氢酶
      6.糖基载体:合成糖蛋白时,磷酸多萜醇作为羰基的载体
      7.激素、维生素和色素的前体(萜类、固醇类)
      8.生长因子与抗氧化剂
      9.参与信号识别和免疫(糖脂)
    [编辑本段]脂类的合成
      1、 脂肪酸的生物合成
       脂肪酸的生物合成 biosynthesis of fattyacids 高级脂肪酸的合成,以乙酰CoA为基础,通过乙酰辅酶A羧化酶的作用,在ATP的分解的同时与CO2结合,产生丙二酸单酰CoA,开始这一阶段是控速步骤,为柠檬酸所促进。丙二酸单酰CoA与乙酰CoA一起,在脂肪酸合成酶的催化下合成C16的软脂酸(或C18的硬脂酸),但这是包括在酰基载体蛋白(ACP)参与下的脱羧、C2单位缩合、以及由NADPH还原过程在内的反复进行的复杂过程。产生的脂肪酸作为CoA衍生物,在线粒体中与乙酰CoA,在微粒体中与丙二酸单酰CoA缩合,每次增加两个碳,不断延长碳链。而单不饱和脂肪酸,由饱和酰基CoA(或ACP)的好氧的不饱和化(微粒体,微生物等。必须有O2和NADH)而产生,或由脂肪酸生物合成途中的β-羟酰ACP的脱水反应(及碳键延长)而产生。多聚不饱和脂肪酸在高等动物不一定产生,可以从摄取的不饱和酸的碳素链的延长等而转变形成。另外环丙烷脂肪酸由S-腺苷甲硫氨酸的C1,结合于不饱和酸的双键上而产生。脂肪酸作为CoA衍生物,用于合成各种底物。
      2、 其他脂类的生物合成
      磷脂的生成
      磷脂酸是最简单的磷脂,也是其他甘油磷脂的前体。磷脂酸与CTP反应生成CDP-二酰甘油,在分别与肌醇、丝氨酸、磷酸甘油反应,生成相应的磷脂。磷脂酸水解成二酰甘油,再与CDP-胆碱或CDP-乙醇胺反应,分别生成磷脂酰胆碱和磷脂酰乙醇胺。
    [编辑本段]脂类的消化和吸收
      正常人一般每日每人从食物中消化的脂类,其中甘油三脂占到90%以上,除此以外还有少量的磷脂、胆固醇及其酯和一些游离脂肪酸(free fatty acids)。食物中的脂类在成人口腔和胃中不能被消化,这是由于口腔中没有消化脂类的酶,胃中虽有少量脂肪酶,但此酶只有在中性PH值时才有活性,因此在正常胃液中此酶几乎没有活性(但是婴儿时期,胃酸浓度低,胃中PH值接近中性,脂肪尤其是乳脂可被部分消化)。脂类的消化及吸收主要在小肠中进行,首先在小肠上段,通过小肠蠕动,由胆汁中的胆汁酸盐使食物脂类乳化,使不溶于水的脂类分散成水包油的小胶体颗粒,提高溶解度增加了酶与脂类的接触面积,有利于脂类的消化及吸收。在形成的水油界面上,分泌入小肠的胰液中包含的酶类,开始对食物中的脂类进行消化,这些酶包括胰脂肪酶(pancreatic lipase),辅脂酶(colipase),胆固醇酯酶(pancreatic cholesteryl ester hydrolase or cholesterol esterase)和磷脂酶A2(phospholipase A2)。
      食物中的脂肪乳化后,被胰脂肪酶催化,水解甘油三酯的1和3位上的脂肪酸,生成2-甘油一酯和脂肪酸。此反应需要辅脂酶协助,将脂肪酶吸附在水界面上,有利于胰脂酶发挥作用。食物中的磷脂被磷脂酶A2催化,在第2位上水解生成溶血磷脂和脂肪酸,胰腺分泌的是磷脂酶A2原,是一种无活性的酶原形成,在肠道被胰蛋白酶水解释放一个6肽后成为有活性的磷脂酶A 催化上述反应。食物中的胆固醇酯被胆固醇酯酶水解,生成胆固醇及脂肪酸。食物中的脂类经上述胰液中酶类消化后,生成甘油一酯、脂肪酸、胆固醇及溶血磷脂等,这些产物极性明显增强,与胆汁乳化成混合微团(mixed micelles)。这种微团体积很小(直径20nm),极性较强,可被肠粘膜细胞吸收。
      脂类的吸收主要在十二指肠下段和盲肠。甘油及中短链脂肪酸(<=10C)无需混合微团协助,直接吸收入小肠粘膜细胞后,进而通过门静脉进入血液。长链脂肪酸及其它脂类消化产物随微团吸收入小肠粘膜细胞。长链脂肪酸在脂酰CoA合成酶(fattyacyl CoA synthetase)催化下,生成脂酰CoA,此反应消耗ATP。脂酰CoA可在转酰基酶(acyltransferase)作用下,将甘油一酯、溶血磷脂和胆固醇酯化生成相应的甘油三酯、磷脂和胆固醇酯。体内具有多种转酰基酶,它们识别不同长度的脂肪酸催化特定酯化反应。这些反应可看成脂类的改造过程,在小肠粘膜细胞中,生成的甘油三酯、磷脂、胆固醇酯及少量胆固醇,与细胞内合成的载脂蛋白(apolipprotein)构成乳糜微粒(chylomicrons),通过淋巴最终进入血液,被其它细胞所利用。可见,食物中的脂类的吸收与糖的吸收不同,大部分脂类通过淋巴直接进入体循环,而不通过肝脏。因此食物中脂类主要被肝外组织利用,肝脏利用外源的脂类是很少的。
      脂类的水解产物,如脂肪酸、甘油一酯和胆固醇等,都不溶解于水。它们与胆汁中的胆盐形成水溶性微胶粒后,才能通过小肠粘膜表面的静水层而到达微绒毛上。在这里,脂肪酸、甘油一酯等从微胶粒中释出,它们通过脂质膜进入肠上皮细胞内,胆盐则回到肠腔。进入上皮细胞内的长链脂肪酸和甘油一酯,大部份重新合成甘油三酯,并与细胞中的载脂蛋白合成乳糜微粒,若干乳糜微粒包裹在一个囊泡内。当囊泡移行到细胞侧膜时,便以出胞作用的方式离开上皮细胞,进入淋巴循环。然后归入血液。中、短链甘油三酯水解产生的脂肪酸和甘油一酯是水溶性的,可直接进入门静脉而不入淋巴。
    [编辑本段]脂类与脂肪
      脂类定义为脂肪酸(多是4碳以上的长链一元羧酸)和醇(包括甘油醇、硝氨醇、高级一元醇和固醇)等所组成的酯类及其衍生物。包括单纯脂类、复合酯类及衍生脂质。
      一提到脂肪,我相信大家都会很明白那是啥东西,那么脂类呢?难道脂类和脂肪是一个概念的?
      其实脂类和脂肪并不是一个意思,脂肪是脂类的一种,脂类包括固醇类、脂肪、类脂等
    [编辑本段]脂类的酶促水解
      1.脂肪酶广泛存在于动物、植物和微生物中。在人体内,脂肪的消化主要在小肠,由胰脂肪酶催化,胆汁酸盐和辅脂肪酶的协助使脂肪逐步水解生成脂肪酸和甘油。
      2.磷脂酶有多种,作用于磷脂分子不同部位的酯键。作用于1位、2位酯键的分别称为磷脂酶A1及 A2,生成溶血磷脂和游离脂肪酸。作用于3位的称为磷脂酶C,作用磷酸取代基间酯键的酶称磷脂酶D。作用溶血磷脂1位酯键的酶称磷脂酶B1。
      3.胆固醇酯酶水解胆固醇酯生成胆固醇和脂肪酸。
      4.小肠可吸收脂类的水解产物。胆汁酸盐帮助乳化,结合载脂蛋白(apoprotein,apo)形成乳糜微粒经肠粘膜细胞吸收进入血循环。所以乳糜微粒(chylomicron,CM)是转运外源性脂类(主要是TG)的脂蛋白。

    09-07-09 | 添加评论 | 打赏

    评论读取中....

精华知识
更多  
意见反馈 帮助