什么是酶

什么是酶
09-12-11  匿名提问 发布
5个回答
时间
投票
  • 0

    味品

    简介
      酶(enzyme), 早期是指in yeast 在酵母中的意思, 指由生物体内活细胞产生的一种生物催化剂。大多数由蛋白质组成(少数为RNA)。能在机体中十分温和的条件下,高效率地催化各种生物化学反应,促进生物体的新陈代谢。生命活动中的消化、吸收、呼吸、运动和生殖都是酶促反应过程。酶是细胞赖以生存的基础。细胞新陈代谢包括的所有化学反应几乎都是在酶的催化下进行的。如哺乳动物的细胞就含有几千种酶。它们或是溶解于细胞液中,或是与各种膜结构结合在一起,或是位于细胞内其他结构的特定位置上。这些酶统称胞内酶;另外,还有一些在细胞内合成后再分泌至细胞外的酶──胞外酶。酶催化化学反应的能力叫酶活力(或称酶活性)。酶活力可受多种因素的调节控制,从而使生物体能适应外界条件的变化,维持生命活动。没有酶的参与,新陈代谢只能以极其缓慢的速度进行,生命活动就根本无法维持。例如食物必须在酶的作用下降解成小分子,才能透过肠壁,被组织吸收和利用。在胃里有胃蛋白酶,在肠里有胰脏分泌的胰蛋白酶、胰凝乳蛋白酶、脂肪酶和淀粉酶等。又如食物的氧化是动物能量的来源,其氧化过程也是在一系列酶的催化下完成的。
      酶催化作用实质:降低化学反应活化能
      酶与无机催化剂比较:
      1、相同点:1)改变化学反应速率,本身几乎不被消耗;2)只催化已存在的化学反应;3)加快化学反应速率,缩短达到平衡时间,但不改变平衡点;4)降低活化能,使化学反应速率加快。5)都会出现中毒现象。
      2、不同点:即酶的特性
      酶的特性
      1、高效性:酶的催化效率比无机催化剂更高,使得反应速率更快;2、专一性:一种酶只能催化一种或一类底物,如蛋白酶只能催化蛋白质水解成多肽;3、多样性:酶的种类很多,大约有4000多种;4、温和性:是指酶所催化的化学反应一般是在较温和的条件下进行的。5、活性可调节性:包括抑制剂和激活剂调节、反馈抑制调节、共价修饰调节和变构调节等。
      一般来说,动物体内的酶最适温度在35到40摄氏度之间,植物体内的酶最适温度在40-50摄氏度之间;细菌和真菌体内的酶最适温度差别较大,有得酶最适温度可高达70摄氏度。动物体内的酶最适PH大多在6.5-8.0之间,但也有例外,如胃蛋白酶的最适PH为1.5,植物体内的酶最适PH大多在4.5-6.5之间。
      酶的这些性质使细胞内错综复杂的物质代谢过程能有条不紊地进行,使物质代谢与正常的生理机能互相适应.若因遗传缺陷造成某个酶缺损,或其它原因造成酶的活性减弱,均可导致该酶催化的反应异常,使物质代谢紊乱,甚至发生疾病.因此酶与医学的关系十分密切。
    [编辑本段]酶的发现
      1773年,意大利科学家斯帕兰扎尼(L.Spallanzani,1729—1799)设计了一个巧妙的实验:将肉块放入小巧的金属笼中,然后让鹰吞下去。过一段时间他将小笼取出,发现肉块消失了。于是,他推断胃液中一定含有消化肉块的物质。但是什么,他不清楚。
      1836年,德国科学家施旺(T.Schwann,1810—1882)从胃液中提取出了消化蛋白质的物质。解开胃的消化之谜。
      1926年,美国科学家萨姆钠(J.B.Sumner,1887—1955)从刀豆种子中提取出脲酶的结晶,并通过化学实验证实脲酶是一种蛋白质。
      20世纪30年代,科学家们相继提取出多种酶的蛋白质结晶,并指出酶是一类具有生物催化作用的蛋白质。
      20世纪80年代,美国科学家切赫(T.R.Cech,1947—)和奥特曼(S.Altman,1939—)发现少数RNA也具有生物催化作用。
    [编辑本段]酶的活力
      酶活力单位(U, active unit):
      酶活力单位的量度。1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25摄氏度,其它为最适条件)下,在1min 内能转化1μmol底物的酶量,或是转化底物中1μmol的有关基团的酶量。
      比活(specific activity):每分钟每毫克酶蛋白在25摄氏度下转化的底物的微摩尔数。比活是酶纯度的测量。
      活化能(activation energy):将1mol反应底物中所有分子由基态转化为过度态所需要的能量。
      活性部位(active site):酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基部分。活性部位通常位于蛋白质的结构域或亚基之间的裂隙或是蛋白质表面的凹陷部位,通常都是由在三维空间上靠得很进的一些氨基酸残基组成。
      酶活测定
      初速度(initial velocity):酶促反应最初阶段底物转化为产物的速度,这一阶段产物的浓度非常低,其逆反应可以忽略不计。
      米氏方程(Michaelis-Mentent equation):表示一个酶促反应的起始速度(υ)与底物浓度([s])关系的速度方程:υ=υmax[s]/(Km+[s])
      米氏常数(Michaelis constant):对于一个给定的反应,使酶促反应的起始速度(υ0)达到最大反应速度(υmax)一半时的底物浓度。
      催化常数(catalytic number)(Kcat):也称为转换数。是一个动力学常数,是在底物处于饱和状态下一个酶(或一个酶活性部位)催化一个反应有多快的测量。
      催化常数等于最大反应速度除以总的酶浓度(υmax/[E]total)。或是每摩酶活性部位每秒钟转化为产物的底物的量(摩[尔])。
      双倒数作图(double-reciprocal plot):那称为Lineweaver_Burk作图。一个酶促反应的速度的倒数(1/V)对底物度的倒数(1/LSF)的作图。x和y轴上的截距分别代表米氏常数和最大反应速度的倒数。
      酶活调节
      竞争性抑制作用(competitive inhibition):通过增加底物浓度可以逆转的一种酶抑制类型。竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。这种抑制使Km增大而υmax不变。
      非竞争性抑制作用(noncompetitive inhibition): 抑制剂不仅与游离酶结合,也可以与酶-底物复合物结合的一种酶促反应抑制作用。这种抑制使Km不变而υmax变小。
      反竞争性抑制作用(uncompetitive inhibition): 抑制剂只与酶-底物复合物结合而不与游离的酶结合的一种酶促反应抑制作用。这种抑制使Km和υmax都变小但υmax/Km不变。
      很大一类复杂的蛋白质物质 [enzyme;ferment],在促进可逆反应(如水解和氧化)方面起着像催化剂一样的作用。在许多工业过程中是有用的(如发酵、皮革鞣制及干酪生产)
      酶是一种有机的胶状物质,由蛋白质组成,对于生物的化学变化起催化作用,发酵就是靠它的作用:~原。
    [编辑本段]酶的催化
      酸-碱催化(acid-base catalysis):质子转移加速反应的催化作用。
      共价催化(covalent catalysis):一个底物或底物的一部分与催化剂形成共价键,然后被转移给第二个底物。许多酶催化的基团转移反应都是通过共价方式进行的。
      催化机理
      酶的催化机理和一般化学催化剂基本相同,也是先和反应物(酶的底物)结合成络合物,通过降低反应的能来提高化学反应的速度,在恒定温度下,化学反应体系中每个反应物分子所含的能量虽然差别较大,但其平均值较低,这是反应的初态。
      S(底物)→P(产物)这个反应之所以能够进行,是因为有相当部分的S分子已被激活成为活化(过渡态)分子,活化分子越多,反应速度越快。在特定温度时,化学反应的活化能是使1摩尔物质的全部分子成为活化分子所需的能量(千卡)。
      酶(E)的作用是:与S暂时结合形成一个新化合物ES,ES的活化状态(过渡态)比无催化剂的该化学反应中反应物活化分子含有的能量低得多。ES再反应产生P,同时释放E。E可与另外的S分子结合,再重复这个循环。降低整个反应所需的活化能,使在单位时间内有更多的分子进行反应,反应速度得以加快。如没有催化剂存在时,过氧化氢分解为水和氧的反应(2H2O2→2H2O+O2)需要的活化能为每摩尔18千卡(1千卡=4.187焦耳),用过氧化氢酶催化此反应时,只需要活化能每摩尔2千卡,反应速度约增加10^11倍。
      酶作用的分子基础
      一、酶的化学组成
      按照酶的化学组成可将酶分为单纯酶和结合酶两大类。单纯酶分子中只有氨基酸残基组成的肽链,结合酶分子中则除了多肽链组成的蛋白质,还有非蛋白成分,如金属离子、铁卟啉或含B族维生素的小分子有机物。结合酶的蛋白质部分称为酶蛋白(apoenzyme),非蛋白质部分统称为辅助因子 (cofactor),两者一起组成全酶(holoenzyme);只有全酶才有催化活性,如果两者分开则酶活力消失。非蛋白质部分如铁卟啉或含B族维生素的化合物若与酶蛋白以共价键相连的称为辅基(prosthetic group),用透析或超滤等方法不能使它们与酶蛋白分开;反之两者以非共价键相连的称为辅酶(coenzyme),可用上述方法把两者分开。表4-1为以金属离子作结合酶辅助因子的一些例子。表4-2列出含B族维生素的几种辅酶(基)及其参与的反应。
      结合酶中的金属离子有多方面功能,它们可能是酶活性中心的组成成分;有的可能在稳定酶分子的构象上起作用;有的可能作为桥梁使酶与底物相连接。辅酶与辅基在催化反应中作为氢(H+和e)或某些化学基团的载体,起传递氢或化学基团的作用。体内酶的种类很多,但酶的辅助因子种类并不多,从表4—1中已见到几种酶均用某种相同的金属离子作为辅助因子的例子,同样的情况亦见于辅酶与辅基,如3-磷酸甘油醛脱氢酶和乳酸脱氢酶均以NAD+作为辅酶。酶催化反应的特异性决定于酶蛋白部分,而辅酶与辅基的作用是参与具体的反应过程中氢(H+和e)及一些特殊化学基团的运载。
      二、酶的活性中心
      酶属生物大分子,分子质量至少在1万以上,大的可达百万。酶的催化作用有赖于酶分子的一级结构及空间结构的完整。若酶分子变性或亚基解聚均可导致酶活性丧失。一个值得注意的问题是酶所催化的反应物即底物(substrate),却大多为小分物质它们的分子质量比酶要小几个数量级。
      酶的活性中心(active center)只是酶分子中的很小部分,酶蛋白的大部分氨基酸残基并不与底物接触。组成酶活性中心的氨基酸残基的侧链存在不同的功能基团,如-NH2、-COOH、-SH、-OH和咪唑基等,它们来自酶分子多肽链的不同部位。有的基团在与底物结合时起结合基团(binding group)的作用,有的在催化反应中起催化基团(catalytic group)的作用。但有的基团既在结合中起作用,又在催化中起作用,所以常将活性部位的功能基团统称为必需基团(essential group)。它们通过多肽链的盘曲折叠,组成一个在酶分子表面、具有三维空间结构的孔穴或裂隙,以容纳进入的底物与之结合(图4-1)并催化底物转变为产物,这个区域即称为酶的活性中心。
      而酶活性中心以外的功能集团则在形成并维持酶的空间构象上也是必需的,故称为活性中心以外的必需基团。对需要辅助因子的酶来说,辅助因子也是活性中心的组成部分。酶催化反应的特异性实际上决定于酶活性中心的结合基团、催化基团及其空间结构。
      三、酶的分子结构与催化活性的关系
      酶的分子结构的基础是其氨基酸的序列,它决定着酶的空间结构和活性中心的形成以及酶催化的专一性。如哺乳动物中的磷酸甘油醛脱氢酶的氨基酸残基序列几乎完全相同,说明相同的一级结构是酶催化同一反应的基础。又如消化道的糜蛋白酶,胰蛋白酶和弹性蛋白酶都能水解食物蛋白质的肽键,但三者水解的肽键有各自的特异性,糜蛋白酶水解含芳香族氨基酸残基提供羧基的肽键,胰蛋白酶水解赖氨酸等碱性氨基酸残基提供羧基的肽键,而弹性蛋白酶水解侧链较小且不带电荷氨基酸残基提供羧基的肽键.这三种酶的氨基酸序列分析显示40%左右的氨基酸序列相同,都以丝氨酸残基作为酶的活性中心基团,三种酶在丝氨酸残基周围都有G1y-Asp-Ser-Gly-Pro序列,X线衍射研究提示这三种酶有相似的空间结构,这是它们都能水解肽键的基础。而它们水解肽键时的特异性则来自酶的底物结合部位上氨基酸组成上有微小的差别所致。
      图说明这三个酶的底物结合部位均有一个袋形结构,糜蛋白酶该处能容纳芳香基或非极性基;胰蛋白酶袋子底部稍有不同其中一个氨基酸残基为天冬氨酸取代,使该处负电荷增强,故该处对带正电荷的赖氨酸或精酸残基结合有利;弹性蛋白酶口袋二侧为缬氨酸和苏氨酸残基所取代,因此该处只能结合较小侧链和不带电荷的基团.说明酶的催化特异性与酶分子结构的紧密关系。
      四、酶原与酶原激活(zymogen andactivation of zymogen)
      有些酶如消化系统中的各种蛋白酶以无活性的前体形式合成和分泌,然后,输送到特定的部位,当体内需要时,经特异性蛋白水解酶的作用转变为有活性的酶而发挥作用。这些不具催化活性的酶的前体称为酶原(zymogen)。如胃蛋白酶原(pepsinogen)、胰蛋白酶原(trypsinogen)和胰凝乳蛋白酶原(chymotrypsinogen)等。某种物质作用于酶原使之转变成有活性的酶的过程称为酶原的激活。使无活性的酶原转变为有活性的酶的物质称为活化素。活化素对于酶原的激活作用具有一定的特异性。
      例如胰腺细胞合成的糜蛋白酶原为245个氨基酸残基组成的单一肽链,分子内部有5对二硫键相连,该酶原的激活过程如图4-3所示.首先由胰蛋白酶水解15位精氨酸和16位异亮氨酸残基间的肽键,激活成有完全催化活性的p-糜蛋白酶,但此时酶分子尚未稳定,经p-糜蛋白酶自身催化,去除二分子二肽成为有催化活性井具稳定结构的α—糜蛋白酶。
      在正常情况下,血浆中大多数凝血因子基本上是以无活性的酶原形式存在,只有当组织或血管内膜受损后,无活性的酶原才能转变为有活性的酶,从而触发一系列的级联式酶促反应,最终导致可溶性的纤维蛋白原转变为稳定的纤维蛋白多聚体,网罗血小板等形成血凝块。
      酶原激活的本质是切断酶原分子中特异肽键或去除部分肽段后有利于酶活性中心的形成酶原激活有重要的生理意义,一方面它保证合成酶的细胞本身不受蛋白酶的消化破坏,另一方面使它们在特定的生理条件和规定的部位受到激活并发挥其生理作用。如组织或血管内膜受损后激活凝血因子;胃主细胞分泌的胃蛋白酶原和胰腺细胞分泌的糜蛋白酶原、胰蛋白酶原、弹性蛋白酶原等分别在胃和小肠激活成相应的活性酶,促进食物蛋白质的消化就是明显的例证。特定肽键的断裂所导致的酶原激活在生物体内广泛存在,是生物体的一种重要的调控酶活性的方式。如果酶原的激活过程发生异常,将导致一系列疾病的发生。出血性胰腺炎的发生就是由于蛋白酶原在未进小肠时就被激活,激活的蛋白酶水解自身的胰腺细胞,导致胰腺出血、肿胀。
      四、同工酶(isoenzyme)
      同工酶的概念:即同工酶是一类催化相同的化学反应,但酶蛋白的分子结构、理化性质和免疫原性各不相同的一类酶。 它们存在于生物的同一种族或同一个体的不同组织,甚至在同一组织、同一细胞的不同细胞器中。至今已知的同工酶已不下几十种,如己糖激酶,乳酸脱氢酶等,其中以乳酸脱氢酶(Lactic acid dehydrogenase,LDH)研究得最为清楚。人和脊柱动物组织中,有五种分子形式,它们催化下列相同的化学反应:
      五种同工酶均由四个亚基组成。LDH的亚基有骨骼肌型(M型)和心肌型(H型)之分,两型亚基的氨基酸组成不同,由两种亚基以不同比例组成的四聚体,存在五种LDH形式.即H4(LDHl)、H3M1(LDH2)、H2M2 (LDH3)、H1M3(LDH4)和M4 (LDH5)。
      M、H亚基的氨基酸组成不同,这是由基因不同所决定。五种LDH中的M、H亚基比例各异,决定了它们理化性质的差别.通常用电冰法可把五种LDH分开,LDH1向正极泳动速度最快,而LDH5泳动最慢,其它几种介于两者之间,依次为LDH2、LDH3和LDH4(图4-5) 图4-5还说明了不同组织中各种LDH所含的量不同,心肌中以LDHl及LDH2的量较多,而骨骼肌及肝中LDH5和LDH4为主.不同组织中LDH同工酶谱的差异与组织利用乳酸的生理过程有关.LDH1和LDH2对乳酸的亲和力大,使乳酸脱氢氧化成丙酮酸,有利于心肌从乳酸氧化中取得能量。LDH5和LDH4对丙酮酸的亲和力大,有使丙酮酸还原为乳酸的作用,这与肌肉在无氧酵解中取得能量的生理过程相适应(详见糖代谢章).在组织病变时这些同工酶释放入血,由于同工酶在组织器官中分布差异,因此血清同工酶谱就有了变化。故临床常用血清同工酶谱分析来诊断疾病(图4-5)。
      五、 别构酶
      别构酶(allosteric enzyme)往往是具有四级结构的多亚基的寡聚酶,酶分子中除有催化作用的活性中心也称催化位点(catalytic site)外;还有别构位点(allosteric site).后者是结合别构剂(allesteric effector)的位置,当它与别构剂结合时,酶的分子构象就会发生轻微变化,影响到催化位点对底物的亲和力和催化效率。若别构剂结合使酶与底物亲和力或催化效率增高的称为别构激活剂(allostericactivator),反之使酶底物的r亲和力或催化效率降低的称为别构抑制剂(allostericinhibitor)。酶活性受别构剂调节的作用称为别构调节(allosteric regulation)作用.别构酶的催化位点与别构位点可共处一个亚基的不同部位,但更多的是分别处于不同亚基上.在后一种情况下具催化位点的亚基称催化亚基,而具别构位点的称调节亚基。多数别构酶处于代谢途径的开端,而别构酶的别构剂往往是一些生理性小分子及该酶作用的底物或该代谢途径的中间产物或终产物。故别构酶的催化活性受细胞内底物浓度、代谢中间物或终产物浓度的调节。终产物抑制该途径中的别构酶称反馈抑制(feedback inhibition).说明一旦细胞内终产物增多,它作为别构抑制剂抑制处于代谢途径起始的酶,及时调整该代谢途径的速度,以适应细胞生理机能的需要。别构酶在细胞物质代谢上的调节中发挥重要作用。故别构酶又称调节酶。(regulatory enzyme)
      六、修饰酶
      体内有些酶需在其它酶作用下,对酶分子结构进行修饰后才具催化活性,这类酶称为修饰酶(modification enzyme)。其中以共价修饰为多见,如酶蛋白的丝氨酸,苏氨酸残基的功能基团-OH可被磷酸化,这时伴有共价键的修饰变化生成,故称共价修饰(covalent modification)。由于这种修饰导致酶活力改变称为酶的共价修饰调节(covalent modification regulation)。体内最常见的共价修饰是酶的磷酸化与去磷酸化,此外还有酶的乙酰化与去乙酰化、尿苷酸化与去尿苷酸化、甲基化与去甲基化。由于共价修饰反应迅速,具有级联式放大效应所以亦是体内调节物质代谢的重要方式。如催化糖原分解第一步反应的糖原磷酸化酶存在有活性和无活性两种形式,有活性的称为磷酸化酶a,无活性的称为磷酸化酶b,这两种形式的互变就是通过酶分子的磷酸化与去磷酸化的过程(详见糖代谢章)
      七、多酶复合体与多酶体系
      体内有些酶彼此聚合在一起,组成一个物理的结合体,此结合体称为多酶复合体(multienzyme complex)。若把多酶复合体解体,则各酶的催化活性消失。参与组成多酶复合体的酶有多有少,如催化丙酮酸氧化脱羧反应的丙酮酸脱氢酶多酶复合体由三种酶组成,而在线粒体中催化脂肪酸β-氧化的多酶复合体由四种酶组成。多酶复合体第一个酶催化反应的产物成为第二个酶作用的底物,如此连续进行,直至终产物生成.
      多酶复合体由于有物理结合,在空间构象上有利于这种流水作业的快速进行,是生物体提高酶催化效率的一种有效措施。
      体内物质代谢的各条途径往往有许多酶共同参与,依次完成反应过程,这些酶不同于多酶复合体,在结构上无彼此关联。故称为多酶体系(multienzyme system)。如参与糖酵解的11个酶均存在于胞液,组成一个多酶体系。
      八、多功能酶
      近年来发现有些酶分子存在多种催化活性,例如大肠杆菌DNA聚合酶I是一条分子质量为109kDa的多肽链,具有催化DNA链的合成、3’-5’核酸外切酶和5’-3’核酸外切酶的活性,用蛋白水解酶轻度水解得两个肽段,一个含5’-3’核酸外切酶活性,另一个含另两种酶的活性,表明大肠杆菌DNA聚合酶分子中含多个活性中心。哺乳动物的脂肪酸合成酶由两条多肽链组成,每一条多肽链均含脂肪酸合成所需的七种酶的催化活性。这种酶分子中存在多种催化活性部位的酶称为多功能酶(multifunctional enzyme)或串联酶(tandem enzyme)。多功能酶在分子结构上比多酶复合体更具有优越性,因为相关的化学反应在一个酶分子上进行,比多酶复合体更有效,这也是生物进化的结果。
    [编辑本段]影响酶活力的因素
      米契里斯(Michaelis)和门坦(Menten)根据中间产物学说推导出酶促反应速度方程式,即米-门公式(具体参考《环境工程微生物学》第四章微生物的生理)。由米门公式可知:酶促反应速度受酶浓度和底物浓度的影响,也受温度、pH、激活剂和抑制剂的影响。
      (1)酶浓度对酶促反应速度的影响
      从米门公式和酶浓度与酶促反应速度的关系图解可以看出:酶促反应速度与酶分子的浓度成正比。当底物分子浓度足够时,酶分子越多,底物转化的速度越快。但事实上,当酶浓度很高时,并不保持这种关系,曲线逐渐趋向平缓。根据分析,这可能是高浓度的底物夹带夹带有许多的抑制剂所致。
      (2)底物浓度对酶促反应速度的影响
      在生化反应中,若酶的浓度为定值,底物的起始浓度较低时,酶促反应速度与底物浓度成正比,即随底物浓度的增加而增加。当所有的酶与底物结合生成中间产物后,即使在增加底物浓度,中间产物浓度也不会增加,酶促反应速度也不增加。
      还可以得出,在底物浓度相同条件下,酶促反应速度与酶的初始浓度成正比。酶的初始浓度大,其酶促反应速度就大。
      在实际测定中,即使酶浓度足够高,随底物浓度的升高,酶促反应速度并没有因此增加,甚至受到抑制。其原因是:高浓度底物降低了水的有效浓度,降低了分子扩散性,从而降低了酶促反应速度。过量的底物聚集在酶分子上,生成无活性的中间产物,不能释放出酶分子,从而也会降低反应速度。
      (

    09-12-11 | 添加评论 | 打赏

    评论读取中....

  • 0

    dkrthmim

    【十信】

     菩萨五十二位修行中,最初十位名十信,因入佛教海,修无量法门,要以信为先也。
    一、信心。心与理合,确切不移,灭一切妄想,名曰信心。
    二、念心。虽在无数劫中,舍身受身,此现前一念,决定不忘,名曰念心。
    三、精进心。不杂曰精,不退曰进,进趣真净,名精进心。
    四、慧心。心纯行勤,智慧自生,名曰慧心。
    五、定心,百杂粉碎,心体湛然,名曰定心。
    六、不退心,定光发明,进修无懈,深入自性,名不退心。
    七、护法心。进趣功纯,保持不失,与十方如来,气分相接,名护法心。
    八、回向心。以保持修道力故,与佛光相交格,名回向心。
    九、戒心。安住净戒,心光常凝,名曰戒心。
    十、愿心。遍游十方,化导众生,随其所愿悉得满足,名曰愿心。

    【十住】

     菩萨五十二位修行中,第二个十位名十住,因信心既立,能住佛地也。又因发起大心,趣入妙道,故又名十发趣。
    一、发心住。以真方便,假十信之用,圆成一心,名发心住。
    二、治地住。以前妙心,履以成地,则一切皆治,名治地住。
    三、修行住。心所涉知,俱得明了,遍修诸行,皆无留碍,名修行住。
    四、生贵住。冥契妙理,行与佛同,气分感通,成如来种,名生贵住。
    五、方便具足住。自利利他,方便具足,名方便具足住。
    六、正心住。心念同佛,惟得其正,名正心住。
    七、不退住。身心增长,无有退缺,名不退住。
    八、童真住。佛之十身灵相,一时具足,如童真之可贵,名童真住。
    九、法王子住。长养圣胎,绍隆佛种,堪作法王之子,名法王子住。
    十、灌顶住。菩萨既为佛子,佛以智水灌顶,藉表成人,名灌顶住。

    【十行】

     菩萨五十二位修行中,第三个十位名十行,因菩萨经十信十住,已成佛子,满足自利,复须长养利他功行,故名十行,亦名十长养。
    一、随顺众生,随喜功德,名欢喜行。
    二、饶利众生,使得法利,名饶益行。
    三、等视众生,不见其过,名无嗔恨行。
    四、三际十方,化身无尽,名无尽行。
    五、了达法门,悉无错误,名离痴乱行。
    六、既离痴乱,则能现诸相,同异圆融,名善现行。
    七、十方虚空,满足微尘,于一尘中,现十方界,尘界交现,不相留碍,名无著行。
    八、缘般若故,成无著行,故六度中,特尊般若,名尊重行。
    九、妙观慧中,显圆融德,能入诸佛法轨中,名善法行。
    十、圆融德相,清净无漏,真无为性,妙契真实,名真实行。


    【十回向】

     菩萨五十二位修行中,第四个十位名十回向,因以大悲心,救护一切众生,故名为回向。前之住行,出俗心多,大悲心少,此则济以悲愿,处俗利生,回此善行,向彼万类。
    一、化度众生,离众生相,回无为心,向涅槃道,名救护一切众生,离众生相回向。
    二、正显中道,归趣本觉,回入法身,无能坏者,名不坏回向。
    三、本觉之理,湛然常住,能觉之智,齐于诸佛,名等一切佛回向。
    四、觉智周圆,无所不遍,名至一切处回向。
    五、一切世界,过恒沙佛,自性功德,重重无尽,名无尽功德藏回向。
    六、于诸佛地,起万行因,依因趣果,取涅槃道,名随顺平等善根回向。
    七、十方众生,皆我性具,本际平等,无有高下,名随顺等观一切众生回向。八、即一切法,离一切相,缘生无性,体即真如,名真如相回向。
    九、诸法本空,心无缚着,于根尘中,得大解脱,名无缚无著解脱回向。
    十、性海圆成,心等法界,含摄周遍,量等虚空,名等法界无量回向。

    【十地】

     1.指声闻乘十地,即受三皈地、信地、信法地、内凡夫地、学信戒地、八人地、须陀洹地、斯陀含地、阿那含地、阿罗汉地。
     2.指缘觉乘十地,即苦行具足地、自觉甚深十二因缘地、觉了四圣谛地、甚深利智地、九圣道地、观了法界虚空界众生界地、证寂灭地、六通地、彻和密地、习想渐薄地。
     3.指菩萨乘十地,即欢喜地、离垢地、发光地、焰慧地、极难胜地、现前地、远行地、不动地、善慧地、法云地。此十地是菩萨五十二位修行中的第五个十位,在此十地,渐开佛眼,成一切种智,已属圣位。
     4.指佛乘十地,即甚深难知广明智慧地、清净自分威严不思议明德地、善明日幢实相海藏地、精妙金光功诸神通智德地、大轮威藏明德地、虚空内清净无垢炎光开相地、广胜法界藏明界地、普觉智藏能净无垢边无碍智通地、无边德庄严回向能照明地、毗卢舍那智海藏地。


    【等觉】

     1.佛的别称。等是平等,觉是觉悟,诸佛的觉悟,平等一如,故名等觉。
     2.大乘五十二阶位中,第五十一位,名为等觉,即十地位满,将证佛果之中间阶段,因其智慧功德,等似妙觉,故名等觉,又名一生补处,或金刚心菩萨。

    <br/><br/><font color=#0556A3>参考文献:</font>《佛学常见辞汇》

    09-12-24 | 添加评论 | 打赏

    评论读取中....

  • 0

    安斯拉夫

    Isozymes (also known as isoenzymes) are enzymes that differ in amino acid sequence but catalyze the same chemical reaction. These enzymes usually display different kinetic parameters (i.e. different KM values), or different regulatory properties. The existence of isozymes permits the fine-tuning of metabolism to meet the particular needs of a given tissue or developmental stage (for example lactate dehydrogenase (LDH)). In biochemistry, isozymes (or isoenzymes) are isoforms (closely related variants) of enzymes. In many cases, they are coded for by homologous genes that have diverged over time. Although, strictly speaking, allozymes represent enzymes from different alleles of the same gene, and isozymes represent enzymes from different genes that process or catalyse the same reaction, the two words are usually used interchangeably.

    09-12-24 | 添加评论 | 打赏

    评论读取中....

精华知识
更多  
意见反馈 帮助