关于变压器知识

问下220千伏自耦有载三绕组变压器的标准阻抗是多少
09-09-03  zaogaotuanzi 发布
3个回答
时间
投票
  • 0

    youmie

    工作原理
    电蚊拍的电路主要由高频振荡电路、三倍压整流电路和高压电击网DW三部分组成。当按下电源开关SB时,由三极管VT和变压器T构成的高频振荡器通电工作,把3V直流电变成18kHz左右的高频交流电,经T升压到约500V(L3两端实测),再经二极管VD2~VD4、电容器C1~C3三倍压整流升高到1500V左右,加到蚊拍的金属网DW上。当蚊蝇触及金属网丝时,虫体造成电网短路,即会被电流、电弧杀灼或击晕、击毙。
    电路中,发光二极管VD1和限流电阻器R1构成指示灯电路,用来指示电路通断状态及显示电池电能的耗损情况。

    参考资料:http://www.52c51.com/article/63.html

    09-09-03 | 添加评论 | 打赏

    评论读取中....

  • 0

    0十圈0

    变压器投运前的看、测、听

    一、看
      1.油位:是否合适。高了,在变压器投入运行带上负荷后,油温上升,油膨胀,很可能使油从油枕顶部的呼吸器连通管处溢出。低了,对变压器的绝缘和冷却作用会降低,影响变压器运行,严重者会烧坏变压器。
      2.盖板、套管、油位计、排油阀:是否密封良好,有无渗漏油现象。否则当变压器带上负荷后,在热状态下,会发生更严重的渗漏现象。套管有无裂纹和放电现象
      3.变压器的外壳接地:是否牢固可*。因为它对变压器和抄表人员起着直接的保护作用。
      4.变压器一、二次出线套管及它与导线的连接:是否良好,相色是否正确。
      5.计量表,表箱:是否倾斜、损坏(投运后,还要看计量表运行是否正常),封条、手续是否完整。
      6.熔丝:选择是否合理。变压器一次额定电流的1.5~2倍,二次熔丝的选用标准通常是变压器的二次额定电流。

      二、测
      用1000~2500伏兆欧表测量变压器的一、二次绕组对地绝缘电阻和绕组间的绝缘电阻,最低值不能低于25~130欧阻。
      变压器安装后投入运行前,必须测量各分接位置的直流电阻,以保证接触良好。配电变压器各相直流电阻的相互差值应小于平均值的4%,线间直流电阻的相互差值应小于平均值的2%。
      空投运上后,还要测量二次侧电压是否平衡,如平衡说明变压器变比正常,无匝间短路。

      三、听
      先将变压器空投(不带负荷),电磁声应无异常,不能有“吱吱”或“劈啪”响声。
      如以上几方面全部合格,变压器就可以带负荷正式运行了。


    B、油浸电力变压器的故障

          油浸电力变压器的故障常被分为内部故障和外部故障两种。内部故障为变压器油箱内发生的各种故障,其主要类型有:各相绕组之间发生的相问短路、绕组的线匝之间发生的匝问短路、绕组或引出线通过外壳发生的接地故障等。外部故障为变压器油箱外部绝缘套管及其引出线上发生的各种故障,其主要类型有:绝缘套管闪络或破碎而发生的接地<通过外壳)短路,引出线之间发生相问故障等而引起变压器内部故障或绕组变形等。变压器的内部故障从性质上一般又分为热故障和电故障两大类。热故障通常为变压器内部局部过热、温度升高。根据其严重程度,热性故障常被分为轻度过热(一般低于150℃)、低温过热(150—300℃)、中温过热(300~700℃)、高温过热(一般高于700℃)四种故障隋况。电故障通常指变压器内部在高电场强度的作用下,造成绝缘性能下降或劣化的故障。根据放电的能量密度不同,电故障又分为局部放电、火花放电和高能电弧放电三种故障类型。
           由于变压器故障涉及面较广,具体类型的划分方式较多,如从回路划分主要有电路故障、磁路故障和油路故障。若从变压器的主体结构划分,可分为绕组故障、铁心故障、油质故障和附件故障。同时习惯上对变压器故障的类型一般是根据常见的故障易发区位划分,如绝缘故障、铁心故障、分接开关故障等。而对变压器本身影响最严重、目前发生机率最高的又是变压器出口短路故障,同时还存在变压器渗漏故障、油流带电故障、保护误动故障等等。所有这些不同类型的故障,有的可能反映的是热故障,有的可能反映的是电故障,有的可能既反映过热故障同时又存在放电故障,而变压器渗漏故障在一般情况下可能不存在热或电故障的特征。

    C、主变压器冲击合闸试验
         
          主变第一次投运前,应在额定电压下冲击合闸五次,第一次受电后持续时间应不小于10分钟,大修后主变应冲击三次;瓦斯下浮子在主变冲击合闸前就应投跳闸,冲击合闸正常,有条件时空载充电24小时;110千伏及以上变压器启动时,如有条件应采用零起升压;变压器的有载调压装置,应于变压器投运时进行切换试验正常,方可投入使用。
          目的:拉开空载变压器时有可能产生操作过电压,不接地或经消弧线圈接地时过电压幅值可达4~4.5倍相电压,在中性点直接接地时也可达3倍相电压,为了检查变压器绝缘强度能否承受全电压或操作过电压需做冲击试验;带电投入空载变压器时,会出现励磁涌流,其值可达6~8倍额定电流,会产生很大的电动力,为了考核变压器的机械强度,同时考核励磁电流衰减初期会否造成继电保护误动,需做冲击试验。

    D、通过变压器的声音判断其运行状况

          变压器是电力系统中的主要设备,一旦变压器故障将对变压器本身及电力系统造成极大的危害。通过变压器在正常运行或出现故障时会发出不同的声音,能更好的对变压器的运行状况有一个深刻的认识,促进对变压器的安全管理。
          1、“嗡嗡”声是正常的声响。当变压器带电后,电流通过铁心产生交变磁通,就会发出“嗡嗡”的均匀电磁声,音响的强弱正比于负荷电流的大小。
          2、“嗡嗡”声响减弱,从变压器内发出音响较小的“嗡嗡”均匀电磁声。变压器停运后送电或新安装竣工后投产验收送电,往往发现电压不正常,这是高压瓷套管引线较细,又由于经过长途运输、搬运不当造成运行发热断线。当变压器带电后,电流通过铁心产生的交变磁通大为减弱,故声音较小。
          3、高且沉重的“嗡嗡”声。受个别大功率电器设备的起动电流冲击,或者变压器过负荷严重时。
          4、“噼啪”的清脆击铁声。这是高压瓷套管引线,通过空气对变压器外壳的放电声,是变压器油箱上部缺油所致。
          5、沉闷的“噼啪”声。这是高压引线通过变压器油而对外壳放电,属对地距离不够或绝缘油中含有水份。是变压器绝缘油的绝缘强度降低油质急剧恶化的表现,可能酿成重大设备事故隐患。因此,决不能掉以轻心。
          6、“吱啦吱啦”的如磁铁吸动小垫片的响声,而变压器的监视装置、电压表、电流表、温度计的指示值均属正常。常常出现于新组装或吊芯检修后的变压器,由于检修时的疏忽大意,没将螺钉或铁垫上紧或掉入小号铁质部件,在电磁力作用下所致。
          7、似蛙鸣的“唧哇唧哇”声。在导线的连接处或T接处发生断线、松动,导致氧化、过热,在刮风时时接时断,接触时发生弧光或火花,,但声响不均,时强时弱,系经导线传递至变压器内发出之声。
          8、“嘶嘶”或“哧哧”的响声。变压器的高压套管脏污,表面釉质脱落或裂损时,会发生表面闪络。晚上可以看到火花。
          9、“吱吱”声。当分接开关调压之后,响声加重,属有载调触头接触不良,系触头有污垢而引起的。
         10、特殊噪声。变压器绝缘油内杂质,堆积在部分轭铁上,从而在电磁力的作用下产生振动,发出特殊噪声。这还会导致变压器运行中绝缘油机械杂质增多,使油质恶化。
          11、“哔剥哔剥” 轻微放电声。变压器的铁心接地,一般采用吊环与油盖焊死或用铁垫脚方法。当脱焊或接触面有油垢时,导致连接处接触不良,而铁心及其夹件金属均处在线圈的电场中,从而感应出一定电位,在高压测试或投入运行时,其感应电位差超过其间的放电电压时,即会产生断续放电声。
          12、“虎啸”声。当变压器的中、低侧压线路短路时,会导致短路电流突然激增而造成这种“虎啸”声。
          13、变压器的音响中会夹杂有“噼啪噼啪”声。是绝缘油中含水份过高,导致对地放电,。
          14、“咕嘟咕嘟”的象烧开水的沸腾声。变压器线圈发生层间或匝间短路,短路电流骤增,或铁心产生强热,导致起火燃烧,致使绝缘物被烧环,产生喷油,冒烟起火。另外,可能是分接开关因接触不良而局部点有严重过热所致。
          由于使变压器发生的各种异常声音的因素较多,产生的故障部位也不尽相同,只有不断地积累变压器的运行经验,增强观察力,才能作出准确判断,确保变压器安全、稳定运行。

    E、变压器内发出声响的判断及处理方法

          户外配电变压器在正常运行或出现故障时会发出不同的声响。本文拟就常见的声响所代表的运行状况及处理方法做简单论述。
          正常的声响。当变压器受电后,电流通过铁心产生交变磁通,就会发出“嗡嗡”的均匀电磁声,音响的强弱正比于负荷电流的大小。
         “吱吱”声。当分接开关调压之后,响声加重,以双臂电桥测试其直流电阻值,均超过出厂原始数据的2%,属接触不良,系触头有污垢而引起的。
          处理方法:旋开分接开关的风雨罩,卸下锁紧螺丝,用搬手把分接开关的轴左右往复旋转10~15次,即可消除这种现象,修后立即装配还原。
         其次,终端杆引至跌落式熔断器的引下线采用裸铝或裸铜绞线,但张力不够,再加上瓷瓶扎线松驰所致。在黄昏和黎明时可见小火花发出“吱吱”声,这与变压器内部发出的“吱吱”声有明显区别。
          处理方法:利用节假日安排停电检修,将故障排除。
         “噼啪”的清脆击铁声。这是高压瓷套管引线,通过空气对变压器外壳的放电声,是变压器油箱上部缺油所致。
          处理方法:用清洁干燥的漏斗从注油器孔插入油枕里,加入经试验合格的同号变压器油(不能混油使用),补油量加至油面线温度+20℃为宜,然后上好注油器。否则,油受热膨胀会产生溢油现象。如条件允许,应采用真空注油法以排除线圈中的气泡。
          对未用干燥剂的变压器,应检查注油器内的排气孔是否畅通无阻,以确保安全运行。
          沉闷的“噼啪”声。这是高压引线通过变压器油而对外壳放电,属对地距离不够(<30mm)或绝缘油中含有水份。
          驱潮的方法:另从三相三线开关中接出三根380V的引线,分别接在配电变压器高压绕组A、B 、C端子上,从而产生零载电流,该电流不仅流过高压线圈产生了铜损,同时也产生了磁通,磁通通过线圈芯柱、铁心上下轭铁、螺栓、油箱还产生了铁损,铜损和铁损产生的热能使变压器油、线圈、铁质部件的水份受到均匀加热而蒸发出来,均通过油枕注油器孔排出箱外。
           低压线圈中感应出25V的零载电压,作为油箱产生涡流发热的电源。从配电变压器的低压绕组a、b、c端子上,接出三根10~16mm2塑料铝芯线,分别在油箱外壳上、中、下缠绕三匝之后,均接于配电变压器低压绕组零线端子上,所产生的涡流发出的热能能使配电变压器油箱受到均匀加热,进一步提高配电变压器的干燥质量。
            注意,若焙烘的温度高于配电变压器的额定温度,去掉B相电源后即可降低干燥时的温度。
           “吱啦吱啦”的如磁铁吸动小垫片的响声,而变压器的监视装置、电压表、电流表、温度计的指示值均属正常。这往往由于新组装或吊芯检修时的疏忽大意,没将螺钉或铁垫上紧或掉入小号铁质部件,在电磁力作用下所致。
           处理方法:待变压器吊芯检修时加以排除。
           似蛙鸣的“唧哇唧哇”声。当刮风、时通时断、接触时发生弧光和火花,但声响不均,时强时弱,系经导线传递至变压器内发出之声。可配合电压表的指示值进行判断,若B相缺电,则电压大致为:
           u1-2=230V,u1-3=400V u2-3=230V,u1-0=230V u2-0=0V,u3-0=230V
           处理方法:立即安排停电检修。一般发生在高压架空线路上,如导线与隔离开关的连接、耐张段内的接头、跌落式熔断器的接触点以及丁字形接头出现断线、松动,导致氧化、过热。待故障排除后,才允许投入运行。
          声响减弱。变压器停运后送电或新安装竣工后投产验收送电,往往发现电压不正常,这是高压瓷套管引线较细,运行发热断线,又由于经过长途运输、搬运不当或跌落式熔断器的熔丝熔断及接触不良。从电压表看出,如一相高、两相低和指示为零(指照明电压),造成两相供电,当变压器受电后,电流通过铁心产生的交变磁通大为减弱,故从变压器内发出音响较小的“嗡嗡”均匀电磁声。
          处理方法:高压线圈的直流电阻值测试。若变压器设置有分接开关,应测量每一档的数据, 分Ⅰ、Ⅱ、Ⅲ进行AB、AC、CA直流电阻值的测量,并注意将运行中的一档放在最后测量,测完之后不再切换。仪表用惠斯登或凯尔文及国产双臂电桥,待自感消逝,指针稳定后进行测试。各个绕组测试值之差,以不超过出厂原始数据的±2%为合格,否则应属接触不良。接触不良会使电阻值增大,是由于触头有污垢所致。此时,旋开风雨罩,卸下锁紧螺丝,用搬手把分接开关的轴左右往复旋转10~15次,可消除这种现象,修后立即装配还原。
           低压线圈的直流电阻值测量:ab、bc、ca的不平衡率应为±1%。
    跌落式熔断器的接触不良,产生于熔断器上的上触头,原因是压力不够而引起。用拉闸杆迫使上触头往下压紧,且与熔芯接触可*。
           微弱的嘶叫声。在变压器的容量较小时(100kVA以下),受个别电器设备的起动电流冲击,例如,26kW直流弧焊机的起弧,又如22kW250kg空气锤的驱动等,经导线传递至变压器内而发出的微弱嘶叫声。
           处理方法:如保护、监视装置,以及其他电器元件无异常预兆,这应属正常现象。
           特殊噪声。由于负载和周围环境温度的变化,使油枕的油面线发生变化,因此,水蒸气伴随空气一并被吸入油枕内,凝成水珠,促使内部氧化生锈,随着积聚程度加剧,会落到油枕的下部。铁锈通过油枕与油盖的连通管,堆积在部分轭铁上,从而在电磁力的作用下产生振动,发出特殊噪声。这还会导致变压器运行油机械杂质增多,使油质恶化。
           处理方法:油枕与集泥器的清洁是同时进行的,应根据变压器的负荷情况,温升状况来决定 。使用经验证明,两年清洁一次为好。
           集泥器装在油枕的下部,用于收集油中沉淀下来的机械杂质和水份,保持运行油有良好的绝缘强度。卸下集泥器(放油阀)后,油会自动流出,至流完为止,然后再打开油枕法兰盘,用清洁干燥的毛巾堵塞油枕与油盖连接管的上口径处,以防油枕里的异物通过连接管进入变压器油和器身内,否则会降低变压器运行油的绝缘强度使油质急剧恶化,并且变压器会发出沉闷“噼啪”声,酿成重大设备事故隐患。因此,决不能掉以轻心。如油枕上部无油部分与空气接触氧化生锈,可用钢丝刷清除至表面清洁为止。然后,以清净干燥的另一毛巾,把枕壁上堆积的机械杂质和油泥铁锈擦拭干净,先用换下的废油清洗,再以合格变压器油冲洗两次至彻底清洁为止。
           清洁工作完毕,立即组装还原。用清洁干燥漏斗从注油器孔插入油枕里,加入经试验合格的同号变压器油(不能混油使用),补油量加至油面线温度+20℃为宜,然后上好注油器 。否则,油受热膨胀,会产生溢油现象。如条件允许,应采用真空注油法,以排除线圈中的气泡。
          继续放电声。变压器的铁心接地,一般采用吊环与油盖焊死或用铁垫脚方法。当脱焊或接触面有油垢时,导致连接处接触不良,而铁心及其夹件金属均处在线圈的电场中,从而感应出一定电位,在高压测试或投入运行时,其感应电位差超过其间的放电电压时,即会产生断续放电声。
          处理方法:吊芯检查。把接地脱焊面清除干净,重新电焊或把油泥消除至清洁为止,保持良好的接触状态。同时应以500V摇表测试,铁心与变压器外壳要接地良好。
          “虎啸”声。当低压线路短路时,会导致短路电流突然激增而造成这种“虎啸”声。
          处理方法:变压器本体的检查与测试,从外观检查着手,参见“声响减弱”的处理方法。
          高低压线圈绝缘电阻值测试:高对低、高对地、低对地之间绝缘电阻应合格(注意前两项用2 500V摇表,后一项用500V摇表测量),其值应不低于出厂原始数据的70%。不然,绝缘油中含水份过高,会导致对地放电,变压器的音响中会夹杂有“噼啪噼啪”声。应采用三相电流干燥法,参见“沉闷的噼啪声”的处理方法。
           将检查测试与前者测试值(档案材料记载数据)进行比较,分析判断的结果,具备变压器运行条件。然后,先断低压侧负荷开关,后高压供电,空载运行,转动电压换相开关,或以500 型三用表电压500V测试档,测得ab、bc、ca各为410V上下,属三相电压基本平衡,而且声响属正常,说明变压器本体没受到损伤,可以运行使用。由此判断短路故障点确在低压侧供电线路上。
           低压线路短路故障的检查与排除。低压线路短路分两种情况,即相间短路和相线对地短路,范围十分广泛,情况相当复杂。结合现场状况及值班操作者提供线索,对判断短路故障点有很大帮助。根据变压器运行使用经验,故障多发生在变压器低压侧至配电室之间汇流排(母排)上,一般采用直观法、测试法以及更换熔丝试送法三者同时使用,即可查出,并得到妥善排除。
           直观检查法:查配电室的电器元件是否烧黑烧焦、冒烟起火、异臭断线、绝缘包层损坏以及相间和相线对地短路而酿成放电痕迹和爆炸损坏的设备等。
           仪表测试检查法:经直观检查把故障点消除后,以500V摇表测试相间ab、bc、ca的绝缘电阻值均为10MΩ,然后再测试a、b、c的三相对地绝缘电阻值各为9MΩ,均属合格。
           更换熔丝试送法:试探其他有无短路点,可分配电回路进行。把每一回路中的保险管拔下,在原保险位置搭配三根22~20号铅锡保险丝(照明只搭配相线),试送供电,若保险丝完好无损,该配电回路均无相间短路和相线对地短路,视为合格,并依次进行至试完为止。
          检修工作完毕,再度检查安全合格,方可合闸送电使用。
          “咕嘟咕嘟”的象烧开水的沸腾声。变压器线圈发生层间或匝间短路,短路电流骤增,或铁心产生强热,导致起火燃烧,致使绝缘物被烧环,产生喷油,冒烟起火。
           处理方法:先断开低压负荷开关,使变压器处于空载状态下,然后切断高压电源,断开跌落式熔断器。解除运行系统,安排吊芯大修。
          可见,变压器受电运行中,发生的故障和异常现象是很多的,经常遇到的情况如上所述。
    F、变压器轻瓦斯动作的原因

         变压器轻瓦斯动作的原因:
    (1)因滤油、加油或冷却系统不严密以至空气进入变压器。
    (2)因温度下降或漏油致使油面低于气体继电器轻瓦斯浮筒以下。
    (3)变压器故障产生少量气体。
    (4)变压器发生穿越性短路故障。在穿越性故障电流作用下,油隙间的油流速度加快,当油隙内和绕组外侧产生的压力差变化大时,气体继电器就可能误动作。穿越性故障电流使绕组动作发热,当故障电流倍数很大时,绕组温度上升很快,使油的体积膨胀,造成气体继电器误动作。
    (5)气体继电器或二次回路故障。
    以上所述因素均可能引起瓦斯保护信号动作。

    G、变压器瓦斯保护的反事故措施

          变压器瓦斯保护动作,轻者发出保护动作信号,提醒维修人员马上对变压器进行处理;重者跳开变压器开关,导致变压器马上停止运行,不能保证供电的可靠性,对此提出了瓦斯保护的反事故措施:
    (1)将瓦斯继电器的下浮筒改为档板式,触点改为立式,以提高重瓦斯动作的可靠性。
    (2)为防止瓦斯继电器因漏水而短路,应在其端子和电缆引线端子箱上采取防雨措施。
    (3)瓦斯继电器引出线应采用防油线。
    (4)瓦斯继电器的引出线和电缆应分别连接在电缆引线端子箱内的端子上。

    H、变压器轻瓦斯动作处理新探

          变压器在运行中,轻瓦斯保护信号动作后,应尽快查明原因,并做好记录,对变压器做外部检查并取气体分析,再根据检查结果采取相应的处理措施。
      1、变压器外部检查
      检查电流、电压表的指示情况,直流系统绝缘情况,有无其他保护动作信号。检查变压器油色、油位是否正常,上层油温是否有明显升高。检查变压器声音有无异常。检查变压器的油枕、防爆管有无喷油、冒油,盘根和塞垫有无变形。检查瓦斯继电器内有无气体,若有应取气体检查分析。若检查其他都无异常,瓦斯继电器内充满变压器油,但无气泡上冒,则属误动作。
      如果上述外部检查无明显异常现象,应立即取气体分析,取气体应在停电后进行,若检查有严重异常,应汇报调度,投入备用电源或备用变压器,退出故障变压器,不经检查处理并试验合格后的变压器,不得投入运行。
      2、取气体分析判定
      变压器内部轻微故障时析出的气体或进入的空气积聚在瓦斯继电器内,至使轻瓦斯继电器动作发出信号。取气体时,观察记录瓦斯继电器内气体的容积后,打开放气阀进行取气体,然后鉴别气体的颜色和可燃性,气体的颜色和可燃性的鉴别应迅速进行,以防有色物质沉淀,经一定时间消失。取气体分析判定如下:
      气体无色、无味,不可燃,属变压器内部进入空气。可能是由于变压器新安装或检修、加油等工作后进入空气,工作完毕后未完全排出。也可能是运行中冷却,潜油泵等密封不严进入空气。
      所取气体有颜色,不可燃,不能确定为是空气,应取油样送交专业人员化验。如发现一氧化碳含量增大,可能为固体(本质)绝缘过热损坏而分解的气体。
      所取气体有色、有气味,可燃,属内部轻微故障,应停电检修。检查气体是否可燃时,应远离变压器。
      3、根据检查结果处理
     对变压器外部检查未发现任何异常和故障现象,瓦斯继电器内充满油,但无气体,可能属于误动。这时应检查瓦斯继电器内部及接点位置,直流系统绝缘情况及瓦斯信号掉牌是否能复归,如果检查瓦斯继电器接点在打开位置,瓦斯信号掉牌不能复归,是直流系统绝缘不良,可能属于直流多点接地造成的误动;瓦斯继电器接点在打开位置,瓦斯信号掉牌不能复归,直流系统绝缘正常,可能属二次回路短路引起的误动,应查明短路点并排除之;瓦斯继电器接点在打开位置,瓦斯信号掉牌能复归,检查直流系统绝缘良好,可能属振动过大等而引起的轻瓦斯误动,检明故障点原因并排除之。如果检查瓦斯继电器在闭合位置,瓦斯信号掉牌不能复归,检查直流系统绝缘又良好,可能属瓦斯继电器本身问题(如浮子进油等故障),这种情况,应停电处理。
      检查变压器,发现变压器油枕中无油、油位低于瓦斯继电器,其他无任何异常现象,轻瓦斯报出信号,可能属油位过低而引起瓦斯动作,这时应投入备用变压器或备用电源,退出故障变压器,有漏油,处理漏油,然后加油至所需油位。
      未发现明显异常和故障现象,瓦斯继电器内发现有气体。取气体检查分析,如果检查气体无色、无味,不可燃,可能属进入空气,放出气体,监视信号报出时间的间隔,如信号动作时间间隔逐渐短时,说明变压器内部有故障,可能会跳闸,此时应将每次信号动作时间做详细记录,并立即向有关调度和上级领导汇报,若是瓦斯继电器内进入空气,应查找进气原因和进气点,无备用变压器,可根据调度命令,将重瓦斯改投信号位置。如果检查气体颜色很淡,不可燃,不能确定是空气时,汇报调度及上级主管,严密监视变压器。取油样送交专业人员进行化验,有问题应立即停电检修。如果检查气体有色、有味,可燃,可能属于变压器内部轻微故障,这时应投入备用变压器及备用电源,故障变压器停电检修。
      发现变压器有异常和明显的故障,投入备用变压器或备用电源,退出故障变压器,取气体检查分析判断。对于所检查出的问题,值班员不能擅自处理,应汇报有关上级领导进行处理。

    I、变压器油质和故障判断的简易方法

         变压器油由于受环境污染和氧化产生的树脂和沉淀物的影响从而发生了劣化,或是在变压器有故障时,均会导致其外状发生改变。利用油的外状对变压器油及变压器的运行状况做出判断分析是一种最基本、最直观的判断方法。
         良好变压器油油样用玻璃杯从变压器底部取样阀中取出少量后,对着阳光仔细观察,良好的变压器油应该是清洁而透明的,不得有沉淀、机械杂质、悬浮物质及棉絮状物质,颜色应为淡黄色。
         油样颜色为棕色或褐色其酸值和水溶性酸往往接近或超过国际标准注意值,但是,其色谱分析没有一定的规律性。一般情况下,对于颜色较深的变压器油,应加强油的化学监督试验,缩短实验周期,或者可以说,就不适宜再用了。应对变压器油进行再生处理,以防止事故的发生。
          油样油色发暗其简化分析中,酸值和水溶性酸均严重超标。一般情况下,油色发暗,则可能为油的老化现象,变压器内部无故障。
          油样油色发黑其简化分析中,闪点往往接近或低于国际标准要求的极限值。色谱分析中,氢气和乙炔组分增高也是一重要特征。一般情况下,油色发黑可判断为变压器内部可能存在放电现象或是放电兼过热现象,变压器油因变压器固体介质的炭化而变黑,放电严重时会造成设备烧毁,甚至发生爆炸事故。闪点过低也会导致变压器发生火灾,甚至爆炸。对于油色发黑,且闪点过低的油应特别引起注意。
          油样浑浊发白其简化分析中,击穿电压的降低和氢气含量的增高是油样浑浊发白的两个重要特征。一般情况下,如果油样浑浊发白,则很可能是油中含有水分造成的,可大致诊断为变压器油内部进水受潮。这里有一个简易方法来大概得知配电变压器油击穿电压值合格与否,而无需用油的介电强度测定仪来判断。取一只无色透明经过烘干的平底玻璃杯,从变压器底部取样阀中取出少量的油样,使之在玻璃杯中形成7cm高的油柱,在光线充足处,将杯底紧贴报纸,从上望下透过油柱,如能看清6号字,则该油样的击穿电压应在25kV以上。而在10kV配电变压器运行中,绝缘油的击穿电压要求不低于25kV。
           以上所述,可以作为对变压器油油质和变压器可能出现的故障做出的初步判断。同时可根据其异常情况的不同,明确需要进行的油化学监督试验项目,以对设备故障及早做出进一步准确的诊断。

    J、变压器铁芯故障判断与消除

          变压器的绕组和铁芯是传递、变换电磁能量的主要部件。保证它们的可靠运行是人们所关注的问题。统计资料表明因铁芯问题造成故障,占变压器总事故中的第三位。制造部门对变压器铁芯缺陷已引起重视,并在铁芯可*接地、铁芯接地监视,以及保证一点接地方面都进行了技术改进。运行部门也把检测和发现铁芯故障提到相当高度。然而,变压器铁芯故障仍屡有发生,其原因主要是由于铁芯多点接地和铁芯接地不良造成。现对两种故障情况的判断及处理方法作一介绍。
         1.铁芯正常时需要一点接地的原因
         变压器正常运行时,带电的绕组与油箱之间存在电场,而铁芯和其他金属构件处于该电场中。由于电容分布不均,场强各异,如果铁芯不可*接地,则将产生充放电现象,破坏固体绝缘和油的绝缘强度,所以铁芯必须有一点可靠接地。
          铁芯由硅钢片组成,为减小涡流,片间有一定的绝缘电阻(一般仅几欧姆至几十欧姆),由于片间电容极大,在交变电场中可视为通路,因而铁芯中只需一点接地即可将整叠的铁芯叠片电位箝制在地电位。
          当铁芯或其金属构件如有两点或两点以上(多点)接地时,则接地点间就会造成闭合回路,它键链部分磁通,感生电动势,并形成环路,产生局部过热,甚至烧毁铁芯。
    变压器铁芯只有一点接地,才是可*的正常接地。即铁芯必须接地,且必须是一点接地。
    铁芯故障主要由两个方面原因引起,一是施工工艺不良造成短路,二是由于附件和外界因素引起多点接地。
           2.铁芯多点接地类型
    (1)安装变压器竣工后,未将油箱顶盖上运输的定位销翻转过来或去除掉,构成多点接地。
    (2)由于铁芯夹件肢板距芯柱太近、铁芯叠片因某种原因翘起后,触及到夹件肢板,形成多点接地。
    (3)铁轭螺杆的衬套过长,与铁轭叠片相碰,构成了新的接地点。
    (4)铁芯下夹件垫脚与铁轭间的绝缘纸板脱落或破损,使垫脚铁轭处叠片相碰造成接地。
    (5)具有潜油泵装置的大中型变压器,由于潜油泵轴承磨损,金属粉末进入油箱中,淤积油箱底部,在电磁力作用下形成桥路,将下铁轭与垫脚或箱底接通,形成多点接地。
    (6)油浸变压器油箱盖上的温度计座套过长,与上夹件或铁轭、旁柱边沿相碰,构成新的接地点。
    (7)油浸变压器油箱中落入了金属异物,这类金属异物使铁芯叠片和箱体构通,形成接地。
    (8)下夹件与铁轭阶梯间的木垫块受潮或表面不清洁,附有较多的油泥,使其绝缘电阻值降为零时,构成了多点接地。
           3.多点接地时出现的异常现象
    (1)在铁芯中产生涡流,铁损增加,铁芯局部过热。
    (2)多点接地严重时,又较长时间未处理,变压器连续运行将导致油及绕组也过热,使油纸绝缘逐渐老化。会引起铁芯叠片两片绝缘层老化而脱落,将引起更大的铁芯过热,铁芯将烧毁。
    (3)较长时间多点接地,使油浸变压器油劣化而产生可燃性气体,使气体继电器动作。
    (4)因铁芯过热使器身中木质垫块及夹件碳化。
    (5)严重的多点接地会使接地线烧断,使变压器失去了正常的一点接地,后果不堪设想。
    (6)多点接地也会引起放电现象。
           4.多点接地故障的检测
         铁芯多点接地故障判断方法通常从两方面检测:
    (1)进行气相色谱分析。色谱分析中如气体中的甲烷及烯烃组分含量较高,而一氧化碳和二氧化碳气体含量和已往相比变化不大,或含量正常,则说明铁芯过热,铁芯过热可能是由于多点接地所致。
    色谱分析中当出现乙炔气体时,说明铁芯已出现间歇性多点接地。
    (2)测量接地线有无电流。可在变压器铁芯外引接地套管的接地引线上,用钳形表测量引线上是否有电流。变压器铁芯正常接地时,因无电流回路形成。接地线上电流很小,为毫安级(一般小于0.3A)。当存在多点接地时,铁芯主磁通周围相当于有短路匝存在,匝内流过环流,其值决定于故障点与正常接地点的相对位置,即短路匝中包围磁通的多少。一般可达几十安培。利用测量接地引线中有无电流,很准确地判断出铁芯有无多点接地故障。
           5.多点接地故障的排除
    (1)变压器不能停运时的临时排除方法:
    ①有外引接地线,如果故障电流较大时,可临时打开地线运行。但必须加强监视,以防故障点消失后使铁芯出现悬浮电位。
    ②如果多点接地故障属于不稳定型,可在工作接地线中串入一个滑线电阻,使电流限制在1A以下。滑线电阻的选择,是将正常工作接地线打开测得的电压除以地线上的电流。
    ③要用色谱分析监视故障点的产气速率。
    ④通过测量找到确切的故障点后,如果无法处理,则可将铁芯的正常工作接地片移至故障点同一位置,用以较大幅度地减少环流。
    (2)彻底检修措施。监测发现变压器存在多点接地故障后,对于可停运的变压器,应及时停运,退出后彻底消除多点接地故障。排除此类故障的方法,根据多点接地类型及原因,应采取相应的检修措施。但也有某些情况,停电吊芯后找不到故障点,为了能确切找到接地点,现场可采用如下方法。
    ①直流法。将铁芯与夹件的连接片打开,在轭两侧的硅钢片上通入6V的直流,然后用直流电压表依次测量各级硅钢片间的电压,当电压等于零或者表指示反向时,则可认为该处是故障接地点。
    ②交流法。将变压器低压绕组接入交流电压220~380V,此时铁芯中有磁通存在。如果有多点接地故障时,用毫安表测量会出现电流(铁芯和夹件的连接片应打开)。用毫安表沿铁轭各级逐点测量,当毫安表中电流为零时,则该处为故障点。

    K、变压器突发短路故障的缺陷分析

          摘要:通过实例介绍了一套系统的、可操作的现场分析判断突发短路故障的方法,对电力系统运行有较大实用价值。
    关键词:变压器、突发短路、故障

         0 引 言
      近年来变压器突发短路冲击后损坏几率大增,已占全部损坏事故的40%以上。变压器经受突发短路事故后状况判断、能否投运,成为运行单位经常要决策的问题。以前变压器发生突发短路事故以后,需要组织各方面专家分析事故成因,然后确定试验方法,根据试验结果继续分析或者追加试验。这种分析、抢修机制已不适应当前电网停电时间限制、高可*性以及事故严重性等情况。北京供电局修试处总结300余台110kV及以上电压等级变压器多年运行维护经验形成了一套固定的短路突发事故试验分析方法,即油色谱分析、绝缘电阻试验、绕组直阻试验和绕组变形试验“四项分析”。实践证明,“四项分析”基本能够满足变压器突发事故的分析要求。
    1 分析项目
    1.1 变压器油中溶解气体色谱分析
      用于判断变压器内是否发生过热或者放电性故障。该项目对变压器突发事故的故障判断十分敏感,但需要仪器精度高,仅适于在试验室进行,故比较费时。实践中,多数情况下对缺陷的初步定性要依*它,综合分析也要结合色谱分析结果进行,而且该方法能判断出很多别的试验无法发现的缺陷,例如中兴庄变电站35kV原#1变压器突发事故后,无载分接开关处放电,但直阻试验反映不出来,只有色谱分析才能发现。
    1.2 绝缘电阻试验
      变压器各绕组、铁心、夹铁、外壳相互之间的绝缘电阻是否正常,是常用的简易检查项目。如老君堂变电站220kV原#1变压器事故掉闸后首先进行绝缘电阻试验,很快发现三侧绕组和铁心对地的绝缘电阻几乎为0,马上就判断为纵绝缘击穿且铁心烧损,与吊罩检查结果相符;又如下面述及的110kV林河变电站#2变压器,也是借助绝缘电阻试验确定了缺陷位置。
    1.3 绕组直阻试验
      直阻试验检查导电回路中分接开关接触是否良好、引线接头焊接或接触是否良好、绕组是否断股、匝间有无短路等缺陷,可配合多种试验共同确定缺陷,被1997年的部颁预试规程确定为变压器最重要的电气试验项目。由于电网短路容量越来越大,短路事故在直阻方面的反映往往很明显。如北土城变电站110kV原#2变压器事故后,通过绕组变形试验发现低压绕组异常,但绝缘电阻正常,色谱分析结果表明发生了涉及绝缘部位的放电,最后依*低压三相直阻不平衡的试验结果分析出:低压绕组明显变形且绕组严重受损,须进行大修。大修时发现几乎所有的绕组都已经扭曲变形,内部结构严重损坏。
    1.4 绕组变形试验
      它是通过各线圈在高频下的响应特性来判断其结构和周围状况是否发生明显变化的新型试验项目。如220kV怀柔变电站#1变压器1997年3月发生套管爆炸事故,由于不知线圈内部状况,不能决定是否更换线圈,后根据绕组变形试验结果正常的结论确定不再更换线圈。在大短路容量的电网中近年变压器发生出口短路事故比率较高(例如华北电网1998年的4起变压器事故中3起源于短路冲击),而绕组变形是其中常见的严重缺陷,所以该项目是现场决定变压器是否投运的主要依据,有其它试验项目不可替代的作用。220kV老君堂变电站原#2变压器短路事故后所有电气和色谱试验均正常,但绕组变形试验表明绕组已经变形并在大修时被确认。该项试验在北京供电局已经开展4年,共进行229台次,其中事故后试验46台次,发现缺陷10起,没有一起判断错误的情况。
      近3年来,共进行了40余次事故抢修,依照上述“四项分析”分析无一误判。可见,这套分析方法比较适于现场,但必须强调:“四项分析”要综合起来使用,方能得出正确的结论。
    2 应用实例
      例1:1998-10-1,110kV林河变电站一台10kV开关速断保护动作掉闸,重合失败,7s后#2变压器(SFZ—40000/110,1996-11投运)本体轻、重瓦斯,闸箱重瓦斯,差动保护均动作,变压器高、低压侧开关掉闸,退出运行。
      油色谱分析表明:总烃含量急剧增加,CO、CO2增加较少,结论为变压器内部存在突发性的裸金属部位的放电。电气试验分析表明:绕组直流电阻试验正常;绕组变形试验发现低压绕组略有疑点;绝缘电阻试验发现低压绕组对高压绕组、铁心及地的绝缘仅有25 MΩ。进行分解试验以查找缺陷位置:高压绕组对低压绕组、铁心以及地绝缘电阻正常;铁心对高、低压绕组及地绝缘电阻正常。判断结果是:低压绕组非线圈部位对地部位的绝缘有问题。
      综合分析:变压器内部发生突发性的裸金属部位放电,但绕组变形、直流电阻试验又未发现明显缺陷,故线圈本身有缺陷的可能性很小;低压绕组有微弱的变形,对地绝缘只有25MΩ,故低压绕组接近变压器箱体的部位(尤其是出线处——即低压绕组对地部位)因短路冲击而放电的可能性最大;低压绕组出线处的手孔可以打开,故可方便地在现场检查。
      变压器内部检查发现:低压内部引线铜排的多个木夹板中,有两处没有包扎铜排的辅助绝缘,其中低压引线上部木夹件处铜排有相间短路放电痕迹,木夹件表面烧黑,引发相邻部位铜排相间发生油间隙电弧放电。变压器内部散落放电后的铜渣少许,油中炭素较多,线圈上部垫块多处松动。证明试验对于故障部位的判断基本正确,该变压器现场处理后投入运行。
      例2:1996-10-28,吕村#2变压器(SFPSZ9—120000/220,1992年投运)110 kV侧B相套管爆炸,套管芯子向上窜起30cm,套管整体上移10cm,根部严重喷油,故障录波器、差动保护、轻重瓦斯、防爆筒均动作。
      试验分析:拔掉高压、中压侧所有套管后,做电气试验结果正常。鉴于套管爆炸从未发生过,上级单位决定该变压器返厂大修。但变压器运输要经过一座高速公路桥,工期不允许。最后,根据试验人员的建议,先进行绕组变形试验,结果正常,之后进行局部放电试验,结果正常。投运后运行正常。

            L、变压器出口短路的危害及预防措施
    一、概述
      电力变压器是电力网的核心设备之一,因而其稳定、可靠运行将对电力系统安全起到非常重要的作用。然而,由于设计制造技术、工艺以及运行维护水平的限制,变压器的故障还是时有发生,尤其是近年来逐步引起人们重视的变压器近区或出口短路(以下简称出口短路)故障,大大影响了电力系统的安全稳定运行。
      统计资料表明,在变压器的损坏的原因中,80%以上是由于变压器发生了出口短路的大电流冲击造成的。因此,加强变压器的运行维护,采取切实有效措施防止变压器出口短路,对确保变压器的安全稳定运行有重要的意义。
      例如2003年8月6日220KV GY变电站, 35KV线路因树木过高造成线路间歇接地,引起35KV母线过电压,过电压击穿了变压器的出口开关A相绝缘拉杆,加上继电保护整定有误,使得变压器出口长时间短路,结果造成220KV主变压器一台损坏、一台严重受损的事故。
      再如2003年5月13日110KV YP变电站,35KV线路因钓鱼甩线造成线路瞬间接地,引起35KV母线过电压,过电压击穿了母线支柱瓷瓶,35KV出口开关因继电保护接线松动而拒动,经约2秒种后,变压器后备保护才将变压器切除,结果造成变压器35KV线圈严重变形。
    二、变压器出口短路的危害
      电力变压器在发生出口短路时的电动力和机械力的作用下,绕组的尺寸或形状发生不可逆的变化,产生绕组变形。绕组变形包括轴向和径向尺寸的变化,器身位移,绕组扭曲、鼓包和匝间短路等,是电力系统安全运行的一大隐患。变压器统组变形后;有的会立即发生损坏事故,更多的则是仍能继续运行一段时间,运行时间的长短取决于变形的严重程度和部部位。显然,这种变压器是带“病”运行,具有故障隐患。这是因为:
    1、绕组机械性能下降,当再次遭受到短路电流冲击时,将承受不住巨大的冲击电动力的作用而发生损坏事故。例如,某台40MVA、110kV的电力变压器,低压侧遭受短路冲击后,常规试验设有发现异常现象;投入运行后1年,在一次短路事故中损坏。
    2、绝缘距离发生变化,或固体绝缘受到损伤,导致局部放电发生。当遇到过电压作用时,绕组便有可能发生饼间或匝间短路导致变压器绝缘击穿事故。或者在正常运行电压下,因局部放电的长期作用,绝缘损伤部位逐渐扩大,最终导致变压器发生绝缘击穿事故。例如,某台150MVA、220kV的电力变压器,低压侧短路后,用常规试验方法没有发现问题,投入运行后6个月,突然发生损坏事故。
    3、累积效应,运行经验表明,运行变压器一旦发生绕组变形,将导致累积效应,出现恶性循环。例如,某台31.5MVA、 110kV的电力变压器,在运行的5年中, 10kV侧曾遭受多次冲击,经吊罩检查发现其内部绕组已存在严重变形现象。若不是及时发现绕组变形;很难说在什么时候这台电力变压器就会发生事故。再如,某变电站的一台40MVA、110kV电力变压器发生短路后速断保护跳开三侧断路器,经预防性试验合格再投运 1个月后,油中特征气体增长。一停运检修发现 35kV绕组已整体变形,包括10kV绕组多处有露铜,导线有烧融现象。因此,对于绕组已有变形但仍在运行的电力变压器来说,虽然并不意味着会立即发生绝缘击穿事故,但根据变形情况不同;当再次遭受并不大的过电流或过电压,甚至在正常运行的铁磁振动作用下;也可能导致绝缘击穿事故。所以,在有的所谓“雷击”或“突发”事故中,很可能隐藏着绕组变形协故障因素。
    三、防止变压器出口短路的技术措施
    1.变压器的中低压侧加装绝缘热缩套。对变压器的中、低压侧电压等级是35KV及以下的,只要其出线采用的是硬母线,可以从变压器出口接线桩头一直到开关柜的母线,包括开关室内高压开关柜底部母排,全部加装绝缘热缩套。如果采用的是软母线,可在变压器出口接线桩头和穿墙套管附近加装绝缘热缩套。这样可有效防止小动物等造成的变压器出口短路。
    2.对变压器的中、低压侧为35KV或10KV电压等级的变压器,由于其属于中性点属于小电流接地系统,所以要采取有效措施防止单相接地时发生谐振过电压,从而引起绝缘击穿,造成变压器的出口短路。防止单相接地时发生谐振过电压的措施有:
    电压互感器的二次开口三角加装消谐器,如微电脑控制的电子消谐器。我们使用的是WNX III型系列微电脑多功能消谐装置,是抑制铁磁谐振过电压,保护高压熔丝、电压互感器免遭损坏的最理想的自动保护装置。它是当代电力电子技术和微电脑技术相结合的产物,具有消谐能力强、功能齐全、抗干扰性能好、可靠性高、运行时不改变一、二次接线,并且无需对装置整定,使用方便。
    电压互感器的一次中性点对地加装小电阻或者非线性消谐电阻。我们加装的是LXQ(D)-10和LXQ(D)-35非线性电阻。
    对电容电流超过规程标准的,加装消弧线圈或者自动调协消弧线圈。
    3.对变压器中低压侧的支柱瓷瓶,包括高压开关柜可更换爬距较大的防污瓷瓶,或者涂刷常温固化硅橡胶防污闪涂料(RTV),防止绝缘击穿造成的变压器出口短路。常温固化硅橡胶防污闪涂料应满足DL/T627—1997标准。
    4.将变压器中低压侧的开关更换为开断容量更大的开关,防止因开断容量不足引起开关爆炸造成的变压器出口短路。
    5.对变压器、母线及线路避雷器要全部更换为性能良好的氧化锌避雷器,提高设备的过电压水平。
    6.不断完善变压器的保护配置。变压器的继电保护尽量采取微机化,双重化,尽可能安装母线差动保护,失灵保护,提高保护动作的可靠性,灵敏性和速动性。变压器的中低压侧应配置限时速断保护,动作时间应<0.5秒。确保在变压器发生出口短路时,可靠、快速切除故障,减小出口短路对变压器的冲击和损害。
    7.对进线为双电源备用电源自投的110KV变电站,要采取措施防止备用电源自投对故障变压器的再次冲击。
    四、防止变压器出口短路的管理措施
    1.加强变压器保护的年检以及继电保护的定值、保护压板的管理工作,确保其动作的正确性,杜绝故障时因保护拒动对变压器造成的损害。
    2.科学合理的计算保护定值,消除保护“死区”,快速切除流过变压器的故障电流。例如,对于变压器的过流保护(后备保护),应该缩短动作时间,在满足与下一级保护配合的选择性条件下,越短越好,最长也不应该大于2s,以减小过电流对变压器的冲击。对于终端变电所,电源测线路保护定值可延伸到终端变的变压器内部,以增加保护动作的可靠性。
    3.对抗外部短路强度较差的变压器或者受过出口短路冲击发生变形的变压器,对于系统短路跳闸后的自动重合或强行投运,应看到其不利的因素。因此,应根据短路故障是否能瞬时自动消除的概率,对近区架空线(如2km以内)或电缆线路取消使用自动重合闸,或适当延长合闸间隔时间以减少因重合闸不成而带来的危害,并且尽量对短路跳闸的变压器进行试验检查。否则有时会加剧变压器的损坏程度,甚至失去重新修复的可能。
    4.加强对线路的巡视,发现长高的树木等及时砍伐,防止线路接地造成的变压器出口短路或者引起的过电压。
    5.加强电缆构封堵,严防小动物进入开关室,避免小动物引起的单相接地造成变压器的出口短路,也避免其引起的过电压对变压器的损害。
    6.对于全封闭的开关室,加装排气扇通风,或者安装抽湿机,始终保持开关室的干燥,防止设备凝露及污闪事故造成的变压器出口短路。
    7.加强对变压器出口处避雷器的预试和运行维护,确保其对因雷击等产生的过电压的吸收,防止避雷器损坏造成的变压器出口短路。
    8.加强变电设备的运行管理,及时发现设备缺陷,保证变压器的正常运行。
    9.加强技术监督工作,严禁设备超周期运行,对室内母线及瓷瓶定期清扫,及时进行耐压试验,确保设备绝缘良好。
    10.每年安排2次以上的设备红外线普测,积极开展避雷器在线监测、绝缘在线监测、高压开关SF6气体在线监测等项目,及时掌握设备运行状况。
    11.对新投运的变压器和未作过变形测试的变压器全部做一次变形测试,保留测试数据,这样,在变压器遭受出口短路冲击后,可以此作为基础数据判断变压器变形程度,认定变压器能否继续运行。对未发生明显绕组变形的变压器,及时投入运行,不仅节省了大量的人力、物力和财力,还大大缩短了检修周期。
    12.加强电网规划、建设的科学管理,合理安排运行方式,限制短路电流,减小出口短路对变压器造成的损害。

    09-09-03 | 添加评论 | 打赏

    评论读取中....

精华知识
更多  
意见反馈 帮助