用光栅分光后出现的散射光斑中本应为绿色的部分却为白色,这是为什么?

如题。
09-09-08  wqsdzp 发布
2个回答
时间
投票
  • 0

    liuchang4537

    不太懂,不过光栅分光在正中间的光束应该是各颜色合成的吧,因为各个辐射源之间没有光程差;而在旁边的另一个极大中应该是彩色光谱,因为随着偏角,各个辐射源之间出现了光程差,而各颜色的光波长不同,导致同相位叠加出现在不同位置。

    而三棱镜分光只有一个极大,是由于色光波长不同导致三棱镜对其折射率不同,导致出射角度不同
    光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵,常用的是复制光栅和全息光栅。图1中的为刻痕的宽度,为狭缝间宽度,为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 分光计是用来把光源激发出来的复合光展开成光谱的一种仪器,这种仪器的主要作用使复合光色散。使之成为各种不同波长的光叫做光的色散或叫分光。有棱镜和光栅二种,以棱镜为色散元件做成的分光仪,有水晶、玻璃、萤石等多种分光仪。以光栅为色散元件的分光仪又有平面衍射光栅或凹面衍射光栅分光仪之分。由于光栅刻划技术和复制技术进一步的提高,光栅已广泛应用于光电直读光谱仪中。光栅与棱镜比较具有一系列优点。首先棱镜的工作光谱区受到材料透过率的限制;在小于120nm真空紫外区和大于50微米的远红外区是不能采用的,而光栅不受材料透过率的限制,它可以在整个光谱区中应用。
    光栅的角色率几乎与波长无关,光栅角色散在第一级光谱中比棱镜大,不过在紫外250nm时石英角色散比光栅角色率大。光栅的分辨率比棱镜大;由于光栅具有上述优点将更进一步得到应用。衍射光栅的制造
    一般说来,任何一种具有空间周期性的衍屏的光学元件都可以称为光栅,如果在一块镀铝的光学玻璃毛胚上刻划一系列等宽,等距而平行的狭缝就是透射光栅。如在一块镀铝的光学玻璃毛胚上刻出一系列剖面结构象锯齿形状,等距而平行的刻线这就是一块反射光栅。
    现代光栅是一系列刻划在铝膜上的平行性很好的划痕的总和,为了加强铝膜与玻璃板的结构的结合力,在它们之间镀一层铬膜或钛膜。在光学光谱区采用光栅刻划密度为0. 5—2400条/毫米。目前大量采用的600条/毫米,1200条/毫米,2400条/毫米。
    为了保持划痕间距d无变化,因此对衍射光栅的刻划条件要求很严。经验证明,对光栅刻划室的温度要求保持0.01—0.0313变化范围,光栅刻划机工作


    台的水平振动不超过1—3微米,光栅刻划室应该清洁,要
    避免通风带来的灰尘,光栅刻划室的相对湿度不应超过60—70%。光栅毛胚大多应有学玻璃和熔融石英研磨制成,结构如图。
    毛胚应该加工得很好,其表面形状和局部误差要求甚严。任何表面误差将使衍射光束的波前发生变形,从而影响成象质量和强度分布。
    为了提高真空紫外区反射率,铝膜上还镀上一层氟化镁。
    制造光栅的方法有机械刻划,光电刻划,复制方法和全息照相刻划四种。
    机械刻划是古老方法,但可靠,间隙刻划技术比较成熟。但要刻划一块100X100mm的光栅(刻划机的刻划速度为15—25条/分)计算须要4个昼夜。因此要求机器、环境在长时间内保持精确恒定不变。
    光电刻划就是利用光电控制的方法可以在某种程度上排除光栅刻划过程中机械变动和环境条件改变所产生的各种刻划误差。它一方面提高了光栅刻划质量,另方面也能在一定程度上简化机械结构、降低个别零件的精度和对周围环境的要求。光栅复制
    光栅刻划时间长和效率低,因此成本很高,不能满足光谱仪器的需求。目前复制法有二种:一次复制法就是真空镀膜法。二次复制法是明胶复制法。一次复制法是一次制成,而二次复制法是先复制母光栅的划痕,然后用该划痕印划在毛胚的明胶上。
    二次复制的工艺比较烦琐,但需要设备和条件都比较简单,明胶法复制光栅质量是比母光栅差些。

    右图是一次复制法的工艺过程图,
    1和2是母光栅的基板和铝膜,涂上一层薄
    的硅油d的清洁的母光栅水平地置于真空
    镀膜机中,镀一层1.5微米的铝膜。铝膜
    和硅油之间是便于使光栅分离。在铝膜3
    上再涂一层粘结剂4使铝膜能与复制光栅
    的基板5牢固地结合,粘结剂用环氧树脂
    加咪唑(1:10)
    还有刻制光栅的方法叫全息照相刻划
    法,其原理如下:二束相干光重叠会产生干

    涉条纹,其间距为。
    D=λ/2sinα
    其中入为光束波长,α为两束光干涉前
    的夹角。如图示激光的射出的相干光束,通过发散物镜O和针孔S,再经抛物镜P反射后落人两块平面反射镜P1和P2。由于平面镜P1和P2的反射使已分离的两束光成交于E面,其交角为2α。这两束光是相干的所以在正面产生干涉条纹,条纹的间距d。
    若在面上放置一块予先涂上抗光蚀层的毛胚,则在蚀层获得干涉条纹的空间潜象,经显影后则在毛胚上获得干涉条纹的立体象(全息象),这就是透射衍射光栅。镀反射膜后可成为反射式衍射光栅。光栅的质量与膜层厚度同光栅常数之比例有关,与光栅毛胚的法线和两相干光束干涉前夹角的等分线是否一致有关,并与显影和曝光时间有关。
    全息照相刻制具有以下优点
    ①改变激光器的波长,可以制造整个光谱区所需要的光栅。②全息照相刻划原则上无尺寸限制可制大光栅。③可制造平面和凹面光栅。④生产效率高、成本低,促使全息照相刻划光栅获得迅速的发展。•§4—2 光栅方程
    光栅能分光,是由于光栅上每个刻槽产生衍射的结果。由于光的衍射使光经过光栅后不同波长的光沿不同方向衍射出去。每个刻槽衍射的光彼此之间是互相干涉的。波长不同的光干涉的极大值出现的方向不同,因而复合光经过光栅后使色散而成光谱。这里,我们不对光栅每个刻槽的衍射和各刻槽之间多光束的干涉作详细地讨论,只给出光栅衍射后波长和衍射角的关系。
    相邻两刻槽间距离为d,设入射光线与光栅法线成α角入射,此时不同波长的光衍射方向是不同的,如波长为入的光将与法线成β角的方向衍射。两相邻刻槽的衍射光①和②,在到光栅前,光线②多走光程为dsinα,而经光栅衍射后光线①又比光线②多走dsinβ,故衍射光①和②经光栅衍射后光程差为d(sinα—sinβ)。衍射光产生干涉,按干涉原理,当光程差为波长的整倍数时,起到了增强和迭加作用。因此,对于波长为入的光,其衍射方向应满足下列方程。
    d(sinα—sinβ)=mλ (m为正整数)
    显然,如果衍射光线和入射光线同在法线一侧,则光程差为:
    d(sinα+sinβ)=mλ 由此得到下列公式:
    d(sinα±sinβ)=mλ
    式中:
    d相邻两刻线间的距离,称光栅常数。
    α入射角,即入射光束和光栅法线夹角。
    β衍射角,即衍射光束和光栅法线夹角。
    如α与β都在光栅法线同一侧,方程取“+”号。
    如α与β都在光栅法线异侧时,方程取“—”号
    λ衍射光的波长:
    m干涉级或称光谱级。
    这个公式称光栅方程,这对平面,凹面,反射和透射光栅都是适用。当给定光栅的入射角确定时,便可以计算不同波长衍射方向。
    对于给定d和α值,计算不同波长光的β值时,如β为负值,即表示入射光和衍射光在法线的异侧;如β为正值,即表入射光和衍射光在法线的同侧。
    光栅方程公式对每个不同的m值有相应的光谱,这称光谱的级。当m取0,1,2…时,分别为0级,1级,2级光谱。相应于各m的负值,有各负级光谱。所谓0级光谱,就是光栅不起色散作用,只起镜面反射形成的入射狭缝的像。
    应当看到这样一个事实,当光栅常数d和入射角给定时,对于不同波长的光会被衍射到不同的β角方向,这就是光栅的分光作用,这些被分光后的光束经聚焦后就成为按波长排列的狭缝象一光谱线。应当看到,一级光谱中波长为λ的谱线和波长为λ/2的二级谱线,波长为λ/3的三级谱线一重迭在一起,这是光栅光谱的一个特点。光栅的色散
    光栅的角色率是指它对不同波长的光彼此衍射的角度间隙的大小,这是作为色散元件光栅的重要参量。我们把光栅方程的d和α看作常量,对β和λ求微分可得到:



    这就是表示光栅的角色散率的公式,其单位是弧度/nm。
    由上式可以看出,光栅的角色散率随不同的衍射角β而变化。但当衍射光在光栅的法线方向,则
    β=0,COSβ=1。如取正一级光谱,则角色散率就是以弧度/nm为单位光栅常数的倒数。尽管角色散率是光栅的重要参数,但通常并不标出,只标出光栅每毫米宽度中的刻线数。
    减少d值,就可以提高分光仪的角色率。但是,光栅的刻线密度有一定的限制。对于给定的光栅,如果我们利用级数高的光谱,也可提高色散率。如二级光谱的角色散率是一级光谱的两倍。
    通常不用角色散来标志分光仪的性能,而用线色散率或线色散率的倒数来标志其性能。
    线色散率是标志不同波长的谱线在分光仪焦面上分开的线距离的大小,它的单位是mm/nm,线色散率和角色散率的关系为:(只有当焦面垂直于仪器的光轴时,此式能成立)。

    其中f是分光仪的成象焦距。由此可见,要增大分光仪的线色散率,须提高光栅的角色散率或者增长分光仪的焦距。
    习惯上分光仪的色散能力总是以线色散率的倒数来表示。即用nm/mm来表示。因此,这个数字愈小,表示分光仪的色散能力愈大光栅的分辨本领

    光栅的分辨本领指的它能分开相邻谱线的能力。当然光栅分辨本领同它的角色散率有关。但并不是一回事,两者有不同的概念。如果波长λ+Δλ的谱线刚好能与波长λ谱线分开,在这个光谱区域的分辨本领的定义用R=λ/dλ来表示,称之为理论分辨率。如图所示:

    分辨率可分为理论分辨率及实际分辨率。理论分辨率比实际分辨率大。理论分辨率的数等于mN。用下式表示
    式中:m为光栅级次
    N为光栅的总线槽数。数值上等于光栅的有效长度L(毫米)和线槽密度N(线/毫米)的乘积,因此上式可写为:
    R理论=m•N=m•L•n
    由此可知,影响理论分辨率的因素是光谱级次,光栅有效长度,光栅的线槽密度以及光的入射角和衍射角。R随这些因素增大而增大。
    实际分辨率还要考虑到其他因素,例如光学系统的象散,仪器狭缝的实际宽度及色散能力,接受器的分辨能力等,因此R实际要比R理论小。
    实际分辨率的表示方法,指出该仪器可以分辨开那些谱线组中的邻近线,这时可以选择谱线组中相距最近的两条谱线的平均波长入与其波长差Δ入之比来表示。光栅的集光本领
    集光本领取决于光栅刻划面积的大小,因为光强正比于仪器相对孔径的平方值,故衡量集
    光本领只需比较相对孔径值的大小,而相对孔径D/f上的D值是指光栅刻划面积的等效直径
    值,即

    式中:h 光栅高度,
    B 光栅宽度,
    α 入射角。
    凹面光栅
    凹面光栅与平面光栅的区别在于毛胚为凹球面反射镜刻成光栅的,在光电直读光谱仪中,凹面光栅本身既是色散元件,又是聚焦元件,由于凹面光栅分光仪的色差小,透镜吸收小,反射损失率小,所以能用到远紫外光谱区。

    凹面光栅所产生的光谱完全符合光栅方程:
    d(sinα±sinβ)=mλ
    其中 α: 入射角
    β: 衍射角
    m: 光谱级数
    d: 光栅常数
    入: 衍射波长

    α和β在法线同侧时取十号,异侧时取—号,d是指球面上弦等分的刻线槽距。罗兰(RowLand)于1882年发现凹面光栅所产生的光谱线的焦点可由下式表示:




    式中:α 入射角
    β 衍射角
    ρ 凹面光栅的曲率半径。
    S 入缝到光栅中心的距离。
    S’光栅面中心到谱线位置的距离。
    罗兰发现,当其中一个解为:
    s =ρcosα
    s’=ρcosβ
    时,入射狭缝s,谱线s,及光栅面中心G在一个图上,该园称为罗兰圆。圆的直径即为凹面光栅的曲率半径Po必须注意,光栅在G点是与园相切的,并不与它相重合,光栅的半径不是园的半径,而是它的直径,同时,该园是垂直于光栅刻线方向的。光栅的闪耀
    光栅的闪耀涉及能量分配问题。由于光栅的分光作用和棱镜不同,同时产生着许多级的光谱,这样就使得光栅分光时能量分配十分分散,每级光谱能量很弱,尤其是零级光谱占去很大部分。但它是不产生色散的,不能利用的。
    光栅分光后,在每一级光谱中间的能量分配取决于光栅刻槽的微观形状,因此在反射光栅中,可以控制刻槽平面和光栅平面之间的夹角,使每个刻槽平面就好象一面镜子把光能高度集中到一个方向去,
    这种方法叫闪耀。
    如果入射光沿N,方向入射,显然沿N’方向衍射的波长的光能量最强,因为这个方向正好是每个小刻槽面象镜子一样反射光方向。我们定义这个衍射方向的波长,即从光栅上衍射的方向恰好的槽面反射光的方向的那个波长为闪耀波长。因此,沿N,方向入射,闪耀波长就是沿N,方向衍射的波长应满足方程
    光栅的鬼线
    一块理想的光栅刻线应该是等距离的。但实际是难以做到的。总是存在一些误差。这种刻线的误差,在光栅仪器中产生的光谱中以鬼线和伴线的形式表现出来。也就是说在不应该有谱线的位置上出现“伪线”
    1.罗兰鬼线
    当刻线间隔有周期性误差时,所出现的伪线称为罗兰鬼线。这些鬼线离母线很近,在母线两边对称出现。
    2.赖曼鬼线
    如果光栅刻线误差是两种周期误差迭加起来的复合误差,则所产生的伪线为离母线很远的“赖曼鬼线”。这种鬼线与母线的距离为母线波长的简单的整数分数倍。
    3.伴线:
    如果光栅上某一局部地方有少数几条间隔不正确的刻线,则在光谱中产生伴线,或称卫线。伴线一般离母线极近。有时分不开。

    09-09-08 | 添加评论 | 打赏

    评论读取中....

  • 0

    鑫海浪88

    1、仪器的主要用途:在近紫外和可见光谱区域内对样品物质作定性和定量的分析,是理化实验室常用分析仪器之一。
    2、仪器的工作环境:
    2.1该仪器应安放在干燥的房间内,使用温度为5°C~35°C。
    2.2使用时放置在坚固平稳的工作台上,而且避免强烈震动或持续震动。
    2.3室内照明不宜太强,且避免日光直射。
    2.4电风扇不宜直接吹向仪器,以免影响仪器的正常使用。
    2.5尽量远离高强度的磁场、电场及发生高频波的电器设备。
    2.6供给仪器的电源为220伏±10%,49.5--50Hz,并须装有良好的接地线。宜使用100W以上的稳压器,以加强仪器的抗干扰性能。
    2.7避免在有硫化氢、亚硫酸氟等腐蚀性气体的场所使用。
    3、主要技术性能及规格:
    3.1光学系统:单光束、衍射光栅。
    3.2波长范围:330nm~800nm.。
    3.3光源:钨卤素灯12V30W。
    3.4接收元件:端窗式G1030光电管。
    3.5波长精度:±2nm。
    3.6波长重现性:0.5 nm。
    3.7光谱带宽:6 nm。
    3.8杂散光:1%(T) (在360 nm处)。
    3.9透过率测量范围:0-100%(T)。
    3.10吸光度测量范围:0-1.999(A)。
    3.11浓度直读范围:0-2000。
    3.12光度精度 :
    3.12.1透过率线性精度±0.5%(T)。
    3.12.2吸光度精度±0.004A(在0.5A处)。
    3.13透过率重现性:0.5%(T)。
    3.14噪声:0.5%(T)(在550 nm处)。
    3.15电源:220伏±10% 49.5-50Hz。
    3.16外形尺寸:552mm× 400mm ×230mm。
    3.17净重:22.5公斤。
    4、仪器的工作原理
    4.1分光光度计的基本原理是溶液中的物质在光的照射激发下,产生了对光吸收的效应,物质对光的吸收是具有选择性的,各种不同的物质都具有其各自的吸收光谱,因此当某单色光通过溶液时,其能量就会被吸收而减弱,光能量减弱的程度和物质的浓度有一定的比例关系,也即符合于比色原理---比耳定律。
    T=I/I LogI0/I=KCL A=KCL
    其中: T 透射比 I0 入射光强度
    I 透射光强度 A 吸光度
    K 吸收系数 L 溶液的光径长度
    C 溶液的浓度
    从以上的公式可以看出,当入射光、吸收系数和溶液的光径长度不变时,透过光是根据溶液的浓度而变化的,分光光度计的基本原理是根据上述之物理光学现象而设计的。
    5、仪器的光学系统:722型光栅分光光度计采用光栅自准式色散系统和单光束结构光路。
    钨灯发出的连续幅射经滤色片选择聚光镜聚光后投向单色器进狭缝,此狭缝正好处于聚光镜及单色器内准直镜的焦平面上,因此进入单色器的复合光通过平面反射镜反射及准直镜准直变成平行光射向色散元件光栅,光栅将入射的复合光通过衍射作用形成按照一定顺序均匀排列的连续单色光谱,此单色光谱重新回到准直镜上,由于仪器出射狭缝设置在准直镜的焦平面上,这样,从光栅色散出来的光谱经准直镜后利用聚光原理成象在出射狭缝上,出射狭缝选出指定带宽的单色光通过聚光镜落在试样室被测样品中心,样品吸收后透射的光经光门射向光电管阴极面。
    6、仪器的结构:722型光栅分光光度计由光源室、单色器、试样室、光电管暗盒、电子系统及数字显示器等部件组成。
    6.1光源室部件:氢灯灯架,钨灯灯架,聚光镜架,截止滤光片组架及氢灯接线架等各通过两个螺丝固定在灯室部件底座上。氢灯及钨灯灯架上装有氢灯与钨灯,分别作为紫外和可见区域的能量幅射源。氢灯、钨灯的装卸更换请参阅光源灯的更换章节。聚光镜安装在聚光镜架上通过镜架边缘两个定位螺丝及后背部的拉紧弹簧,角度校正顶针使其定值。当需要改变聚焦光斑在单色器入射狭缝上下位置,可通过角度校正顶针进行调整。聚光镜下有一定位梢,旋转镜架可改变光斑在单色器入射狭缝左、右位置。为了消除光栅光谱中存在着级次之间的光谱重叠问题及当在紫外区域使紫外幅射能量进入单色器,在灯室内安置了截止滤光片组。截止滤光片组通过柱头螺丝固定在一联动轴上,改变滤光片组的前后位置可改变紫外能量幅射传输在聚光镜上的方位。轴的另一端装有一齿轮,用以齿合单色器部件波长传动机构大滑轮上的齿轮,使截止滤光片组的选择与波长值同步。
    6.2单色器部件:单色器是仪器的心脏部分,布置在光源与试样室之间,用三个螺丝固定在灯室部件上。单色器部板内装有狭缝部件,反光镜组件、准直镜部件,光栅部件波长线性传动机构等。
    6.2.1狭缝部件:仪器入射、出射狭缝均采用宽度为0.9mm的等宽度双刀片狭缝,通过狭缝固定螺丝固定在狭缝部件架上,狭缝部件是用两个螺丝安装在单色器架上。安装狭缝时注意狭缝双刀片斜面必须向着光线传播方向,否则会增加仪器的杂散光。反光镜组件安装在入射狭缝部件架上,反光镜采用一块方形小反光镜,通过组件架上的调节螺钉可改变入射光的反射角度,使光斑打在准直镜上。
    6.2.2准直镜部件:准直镜是一块凹形玻璃球面镜,装在镜座上,后部装有三套精密的细牙调节螺钉。用来调整出射光聚焦于出射狭缝,以及出射于狭缝时光的波长与波长盘上所指示波长相对应。
    6.2.3光栅部件与波长传动机构:光栅在单色器中主要起色散作用,由于光栅的色散是线性的,因此光栅可采用线性的传动机构。722仪器采用扇形齿轮与波长转动轴上的齿轮相吻合,达到波长刻度盘带动光栅转动,改变仪器出射狭缝的波长值。另外在单色器由转盘大、小滑轮及尼龙绳组成了一套波长联动机构,大滑轮上的齿轮与截止滤光片转轴上的齿轮齿合,使波长值与截止滤光片组同步。光栅安装在光栅底座上,通过光栅架后的三个螺钉可改变光栅的色散角度。
    6.3试样室部件:试样室部件由比色皿座架部件及光门部件组成。
    6.3.1比色皿座架部件:整个比色皿座连滑动座架通过底部三个定位螺丝全部装在试样室内,滑动座架下装有弹性定位装置,拉动拉杆能正确地使滑动座架带动四档比色皿正确处于光路中心位置。
    6.3.2光门部件:在试样室的右侧通过三个定位螺丝装有一套光门部件,其顶杆露出盒右小孔,光门挡板依靠其本身重量及弹簧作用向下垂落至定位螺母,遮住透光孔,光束被阻挡不能进入光电管阴极面,光路遮断,仪器可以进行零位调节。当关上试样室盖时,顶杆便向下压紧,此时顶住光门挡板下端。在杠杆作用下,使光门挡板上抬,打开光门,可调整100%进行测量工作。
    6.4光电管暗盒部件:整个光电管暗盒部件通过四个螺钉固定在仪器底座上。部件内装有光电管、干燥剂筒及微电流放大器电路板。光电管采用插入式G1030型端窗式光电管,其管脚共有14个,其中4、8两脚为光电阴极,1、6、10、12四脚为阳极。
    7、仪器的安装使用与维护
    7.1使用仪器前,使用者应该首先了解本仪器的结构和工作原理,以及各个操作旋钮之功能。在未接通电源前,应该对于仪器的安全性进行检查,电源线接线应牢固。接地要良好,各个调节旋钮的起始位置应该正确,然后再接通电源开关。
    仪器在使用前先检查一下,放大器暗盒的矽胶干燥筒(在仪器的左侧),如受潮变色,应更换干燥的蓝色矽胶式或者倒出原矽胶,烘干后再用。
    仪器经过运输和搬运等原因,会影响波长精度,吸光度精度,请根据仪器调校步骤进行调整,然后投入使用。
    7.2将灵敏度旋钮调置“1”档(放大倍率最小)。
    7.3开启电源,指示灯亮,选择开关置于“T”,波长调置测试用波长,仪器预热20分钟。
    7.4打开试样室盖(光门自动关闭),调节“0”旋钮,使数字显示为“00.0”盖上试样室盖,将比色皿架处于蒸馏水校正位置,使光电管受光,调节透过率“100%”旋钮,使数字显示为“100.0”
    7.5如果显示不到“100.0”,则可适当增加微电流放大器的倍率档数,但尽可能倍率置低档使用,这样仪器将有更高的稳定性,但改变倍率后必须按(4)重新校正“0”和“100%”。
    7.6预热后,按(4)连续几次调整“0”和“100%”,仪器即可进行测定工作。
    7.7吸光度A的测量按(4)调整仪器“00.0”和“100%”,将选择开关置于“A”,调节吸光度调节器调零旋钮,使得使得数字显示为“.000”,然后将被测样品移入光路,显示值即为被测样品的吸光度的值。
    7.8浓度C的测量:选择开关由“A”旋置“C”,将已标定浓度的样品放入光路,调节浓度旋钮,使得数字显示为标定值,将被测样品放入光路,即可读出被测样品的浓度值。
    7.9如果大幅度改变测试波长时,在调整“0”和“100%”后稍等片刻,(因光能量变化急剧,光电管受光后响应缓慢,需一段光响应平衡时间),当稳定后,重新调整“0”和100%即可工作。
    7.10每台仪器所配套的变色皿,不能与其它仪器上的比色皿单个调换。
    7.11本仪器数字表后盖,有信号输出0-1000MV,插座1脚为正,2脚为负接地线。
    7.12仪器的维护:
    7.12.1为确保仪器稳定工作在电压波动较小的地方,220V电源预先稳压,宜备220V稳压器一只(磁饱和式或电子稳压式)。
    7.12.2当仪器工作不正常时,如数字表无亮光,光源灯不亮,开关指示灯无信号,应检查仪器后盖保险丝是否损坏,然后查电源线是否接通,再查电路。
    7.12.3仪器要接地良好。
    7.12.4仪器左侧下角有一只干燥筒,应保持其干燥性,发现变色立即更新或加以烘干再用。
    7.12.5另外有二包硅胶放在样品室内,当仪器停止使用后,也应该定期更新烘干。
    7.12.6当仪器停止工作时,切断电源,电源开关同时切断。
    7.12.7为了避免仪器积灰和沾污,在停止工作时间内,用塑料套子罩住整个仪器,在套子内应放数袋防潮硅胶,以免灯室受潮、反射镜镜面发霉点或沾污,影响仪器能量。
    7.12.8仪器工作数月或搬动后,要检查波长精度和吸光度A精度等方面,以确保仪器的正常使用和测定精度。
    8、仪器的调校和故障修理
    仪器使用较长时间后,与同类型的其它仪器一样,可能发生一些故障,或者仪器的性能指标有所变化,需要进行调校或修理,现分别简单介绍如下,以供使用维护者参考。
    8.1仪器的调整
    8.1.1钨灯的更换和调整:
    光源灯是易损件,当损件更换或由于仪器搬运后均可能偏离正常位置,为了使仪器有足够的灵敏度,如何正确地调整光源灯的位置则显得更为重要,用户在更换光源灯时应带上手套,以防沾污灯壳而影响发光能量。
    722仪器的光源灯采用12V30W插入式钨卤素灯,更换钨灯时应先切断电源,然后用附件中的扳手旋松钨灯架上的二个紧固螺丝,取出损坏的钨灯,换上钨灯后,将波长选择在550mm左右,开启主机电源开关,移动钨灯上、下、左、右位置,直到成象在入射狭缝上。选择适当的灵敏度开关,观察数字表读数,经过调整至数字表读数为最高即可。最后将二紧固螺丝旋紧。注意:二紧固螺丝为钨灯稳压电源的输出电压,当钨灯点亮时,千万不能短路,否则会损坏钨灯稳压电源电路元件。
    8.1.2波长精度检验与校正:采用镨钕滤色片529纳米及808纳米二个特征吸收峰,通过逐点测试法来进行波长检定与校正。本仪器的分光系统采用光栅作为色散元件,其色散是线性的,因此波长分度的刻度也是线性的。当通过逐点测试法记录下的刻度波长与镨钕滤色片特征吸收. 波长值超出误差,则可卸下波长手轮,旋松波长刻度盘上的三个定位螺丝,将刻度指示置特征吸收波长值,误差范围(≤±2nm),旋紧三个定位螺丝即可。
    8.1.3吸光度精度的调整:选择开关置于“T”,调节透过率“00.0”和“100.0”后,再将选择开关置于“A”, 旋动“吸光度调零”旋钮,使得显示值为“.000”。将0.5A左右的滤光片(仪器附)置于光路,测的其吸光度值。选择开关置于“T”, 测的其透过率值,根据A=lg1/T计算出其吸光度值。如果实测值与计算值有误差,则可调节“吸光度斜率电位器”,将实测值调整至计算值,两者允许误差为±0.004A。
    8.2故障分析:
    8.2.1初步检查:当仪器一旦出现故障,首先关主机电源开关然后按下列步骤逐步检查。
    8.2.1.1当开启仪器电源,钨灯是否亮。
    8.2.1.2波长盘读数指示是否在仪器允许波长范围内。
    8.2.1.3仪器灵敏度开关是否选择适当。
    8.2.1.4T、A、C开关是否选择在相应的状态。
    8.2.1.5试样室盖是否关紧。
    8.2.1.6仪器调零及调100%时是否选择在相应的旋钮调节。
    8.2.2初步判断:仪器的机械系统、光学系统及电子系统为一整体,工作过程中互有牵制,为了缩小范围及早发现故障所在,按下列试验可以原则上区分故障性质。
    8.2.2.1光学系统试验:①灯电源开关按下,点亮钨灯。②仪器波长刻度选择在580nm,打开试样室盖以白纸插入光路聚焦位置,应见到一较亮、完整的长方形光斑。③手调波长向长波,白纸上应见到光斑由紫逐渐变红;手调波长向短波,白纸上应见到光斑由红逐渐变紫。④波长在330nm—800nm范围,改变相应的灵敏度档调节100%钮,观察数字表读数显示能达到100.0值。上述试验通过,光学系统原则上正常。
    8.2.2.2机械系统试验:①手调波长钮330nm—800nm往返手感平滑无明显卡住。②检查各按钮、旋钮、开关及比色皿选择拉杆手感是否灵活。上述试验通过,机械系统原则上正常。
    8.2.2.3电子系统试验:①灯电源按钮按下,应点亮钨灯;②打开试样室盖,调节调零旋钮观察数字显示读数应为00.0左右可调。③选择波长580,灵敏度开关选择T档,关上试样室盖,此时调节100%旋钮观察数字显示读数应为100.0左右可调。④T、A、C转换开关选择T档,试样室空白,当完成仪器调零及调100%后选择A档,调节消光零旋钮观察数字显示读数应.000左右可调。上述试验通过,电子系统原则上正常。

    参考资料:科学仪器在线

    4

    09-09-08 | 添加评论 | 打赏

    评论读取中....

精华知识
更多  
意见反馈 帮助