你对欧文e休斯关于公共管理未来的观点有何看法?

你对欧文e休斯关于公共管理未来的观点有何看法?
09-09-29  匿名提问 发布
1个回答
时间
投票
  • 0

    cps6688

    客户体验管理  客户体验管理(CEM,Customer Experience Management) 什么是客户体验管理?
      客户体验管理是近年兴起的一种崭新客户管理方法和技术。根据伯尔尼 H. 施密特(Bernd H·Schmitt)在《客户体验管理》一书中的定义,客户体验管理(CEM,Customer Experience Management)是“战略性地管理客户对产品或公司全面体验的过程”,它以提高客户整体体验为出发点,注重与客户的每一次接触,通过协调整合售前、售中和售后等各个阶段,各种客户接触点,或接触渠道,有目的地,无缝隙地为客户传递目标信息,创造匹配品牌承诺的正面感觉,以实现良性互动,进而创造差异 化的客户体验,实现客户的忠诚, 强化感知价值,从而增加企业收入与资产价值。通过对客户体验加以有效把握和管理,可以提高客户对公司的满意度和忠诚度,并最终提升公司价值。
      所谓体验,就是企业以服务为舞台、以商品为道具进行的令消费者难忘的活动。产品、服务对消费者来说是外在的,体验是内在的、存于个人心中,是 个人在形体、情绪、知识上参与的所得。客户体验是客户根据自己与企业的互动产生的印象和感觉。厂商客户对厂商的印象和感觉是从他开始接触到其广告、宣传品,或是第一次访问该公司就产生了,此后,从接触到厂商的销售、产品,到使用厂商的产品,接受其服务,这种体验得到了延续,因此,客户体验是一个整体的过 程,一个理想的客户体验必是由一系列舒适、欣赏、赞叹、回味等心理过程组成,它带给客户以获得价值的强烈心理感受;它由一系列附加于产品或服务之上的事件 所组成,鲜明地突出了产品或服务的全新价值;它强化了厂商的专业化形象,促使客户重复购买或提高客户对厂商的认可。一个企业如果试图向其客户传递理想的客 户体验,势必要在产品、服务、人员以及过程管理等方面有上佳的表现,这就是实施CEM的结果。
      客户体验管理的作用与内容
      CEM的作用主要有:
      及早发现问题CEM工具可识别并跟踪系统的顾客问题,以便使企业决策者能立即采取措施加以解决,做到防微杜渐,避免因此造成问题的失控和更大的浪费。
      减少营销活动的疑问通过收集和报告顾客对具体营销项目的评价,CEM能使营销机构更好地理解顾客反应,从而开发更具个性化、更有效的服务。一个精心策划、度身定制的营销活动可以减少顾客的疑问。
      增加销售营销活动的反应率平均仅为2%~3%。营销机构从客户联络中心获取顾客真正的需求,以提高反应率。没有CEM,联络中心就不得不耗费更多的时间和财力来收集和报告顾客的主要信息。CEM分析应用软件对数据可自动收集和报道。
      保留客户CEM工具以通过快速识别顾客不满意的地方使企业做出必要的改变,避免疏远或丢失顾客,以减少顾客流失。
      一家企业(或一个品牌)可以直接或间接让客户体验的各种因素,在不同行业、对不同目标市场与客户,其重要性各不一样。但最终客户体验的好与坏都离不开这些因素,亦是客户为什么光顾(或不光顾)的原因。这些因素有:
      产品。包括实物和服务。有即时享用的(如餐饮业),亦有以后才使用(如电子及耐用消费品)。
      服务。包括基本服务(服务于基本产品)及额外服务于基本服务(如售后、维修和咨询服务)。
      关系。包括各种加强与客户关系的手段(如VIP俱乐部,特殊优惠予长期客户等)。
      便利性。包括在整个客户周期流程(购买/消费前、中、后)的便利性,是否容易、省时、省力(如网上/电话银行)。
      品牌形象。包括针对各种市场与目标客户的品牌定位。
      价格。包括评价、规格、高性价比、客户细分定价等。
      CEM的目标是在各个客户接触点上(例如,销售人员,呼叫中心,代理商,广告,活动,收账人员,客户接待,产品使用手册和网站),产品、服务 以及一系列感受(例如,视觉,语气,味觉,气氛,细致入微的关怀与照顾)产生“利好因素”的综合产物,使客户关系最优化、客户价值最大化。CEM不是不顾 成本,把客户想要的所有东西都提供给他们,或者通过持续的高价格低成本的策略来增加利润,而是在不同种类的客户之间保持平衡。
      CEM成功实施的评价标准在于根据对企业的价值贡献对不同的客户进行区别管理,更好地向企业最有价值的客户提供个性化和差异化的购买体验,以及在满意 度、保有率和忠诚度指标上的提升。这些转变也有可能源自对非价值客户的服务降低优先级;包括降低服务和满意度,降低保有率和忠诚度,甚至用提升费用或其他 方式“砍掉”这些“赔本客户”。
      CEM必须竭力保证客户从购买中获得良好的感受,因而特别强调对客户不满意的补偿,比如某航空公司为某个等待移植器官而又延误了航班的旅客特 别租一架飞机;或者在感恩节商店已经售货一空的时候经理将火鸡亲自送到客人的家里;这些现象都以某种极端方式表现了尽其所能让客户体验到满意。
      在如今激烈的市场竞争中,CEM将成为保留客户的关键因素,还能够为不同公司挖掘消费者的潜力,并根据他们的价值来满足客户的需求。它能够使服务与其价值相对应,识别销售时机并能有效管理消费者的不确定因素,以便于保留最有价值的客户。企业要想获得竞争优势,就必须注重每一次的交互过程中客户体验对于企业将来的利润和收益的作用与影响,并且要优化客户体验,确保跨渠道和跨市场营销的正常运作。
      客户体验管理方法
      客户体验管理方法分为七个主要步骤。现通过一零售业例子阐述其具体应用。见下图(客户体验管理方法七个步骤)
      美苏电器(化名)是一家销售数码产品与影音器材的香港零售连锁。大陆朋友每到香港,若想购买数码相机、录像等电子产品,十之八九定到旺角西洋菜街采购。香港的街道普遍不长,西洋菜街亦比较短,但在短短一条街上,美苏电器共开有四间店。他们的老板是否傻的?当然不是,让我套用客户体验管理方法去解释他们的决策行为。
      品牌价值就是客户为什么光顾您。经过调查与分析,美苏电器认为自己的明码实价与可靠的品牌形象是消费者光顾的最主要原因。
      2. 了解目前的客户体验和期望
      2a. 根据调查,客户的实际体验在价格和品牌形象都不错(7分)、服务与产品OK(6分),便利性稍差(5分),因零售一买一卖并没有太多关系成分放在内(4分)。
      2b. 如三角定律所述,满意度 = 体验 – 期望。通过对客户的调查,前线员工反馈及管理层的判断、客户对于产品、价格、便利性和品牌形象都有颇高期望(7分)。
      2c. 满意度 = 体验 – 期望,就是2c = 2a – 2b。客户比较不满意的是便利性和产品,觉得店铺数目不足(-2分),产品类别还不够多(-1分)。
      d. 做客户满意度时,不能忽略各种满意度的权重,因为不是所有体验对客户都是同样重要。在同一条街上客人觉得产品都是一样、价格也差不多,方便成为最重要考虑(9分)。
      3. 确定关键体验
      将2d重要性乘以2c满意度就得出满意度权重,发现便利性不只是客人的关键体验(9分),也是美苏电器做得最差(-2分),出来的满意度权重是-18分。 
      4. 就理想与实际体验进行差距分析
      4a. 理想体验基本上与2a实际体验是一样,除了在便利性为10分,其余仅仅令客户满意,为什么?因为所有企业都是有资源限制,不能(也不该)无限制满足客户期望。将资源投放在客户最看重的关键体验上,大大超越其期望,令其非常满意、非常忠诚。
      4b. 体验差距是2a实际体验与4a理想体验之差,在便利性是-5分。
      5. 制定需求以弥补差距
      基于在4b体验差距便利性是最大(最差),在同一条街开更多店铺是规划需求的重点。
      6. 将需求与企业策略与能力相结合
      美苏电器的渠道策略为在西洋菜街开更多分店,并在其他生意一般的区域关掉分店,也不考虑进行互联网或电话销售。因同一条街分店距离极近存货共享形成方便顾客与节省成本的两大优势;在人、流程和技术的能力上也要配合调整。
      7. 用于持续改善的回馈机制
      用业绩证实,用数据说话。从一家店到两家店,业绩上是否翻一番?他们开两家店时的生意是两倍、三家店是三倍、四家店是四倍以上。所以就分阶段地用业绩引证在同一条街开了四家店。但整个客户体验管理方法并未完结,于第七步又回到第一步,如今从“便利性”是其最重要的品牌价值开始,每隔一段时间,再重复同样七个步骤,以调整策略与执行跟上市场与客户变化。





    最优控制理论概述

    最优控制理论是现代控制理论的一个主要分支,着重于研究使控制系统的性能指标实现最优化的基本条件和综合方法。
      最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。它是现代控制理论的重要组成部分。这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的动态规划和庞特里亚金等人提出的最大值原理。这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。1948年维纳发表了题为《控制论—关于动物和机器中控制与通讯的科学》的论文,第一次科学的提出了信息、反馈和控制的概念,为最优控制理论的诞生和发展奠定了基础。钱学森1954年所著的《工程控制论》(EngineeringCybernetics)直接促进了最优控制理论的发展和形成。
    [编辑本段]最优控制理论研究的内容
    最优控制理论所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。这类问题广泛存在于技术领域或社会问题中。
      例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多,制定一项最合理的人口政策使人口发展过程中老化指数、抚养指数和劳动力指数等为最优等,都是一些典型的最优控制问题。最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。苏联学者Л.С.庞特里亚金1958年提出的极大值原理和美国学者R.贝尔曼1956年提出的动态规划,对最优控制理论的形成和发展起了重要的作用。线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。
    [编辑本段]解决最优控制问题的主要方法
    为了解决最优控制问题,必须建立描述受控运动过程的运动方程,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。通常,性能指标的好坏取决于所选择的控制函数和相应的运动状态。系统的运动状态受到运动方程的约束,而控制函数只能在允许的范围内选取。因此,从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。
      一、古典变分法
      研究对泛函求极值的一种数学方法。古典变分法只能用在控制变量的取值范围不受限制的情况。在许多实际控制问题中,控制函数的取值常常受到封闭性的边界限制,如方向舵只能在两个极限值范围内转动,电动机的力矩只能在正负的最大值范围内产生等。因此,古典变分法对于解决许多重要的实际最优控制问题,是无能为力的。
      二、极大值原理
      极大值原理,是分析力学中哈密顿方法的推广。极大值原理的突出优点是可用于控制变量受限制的情况,能给出问题中最优控制所必须满足的条件。
      三、动态规划
    动态规划是数学规划的一种,同样可用于控制变量受限制的情况,是一种很适合于在计算机上进行计算的比较有效的方法。
      最优控制理论已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。
    [编辑本段]最优化技术
    最优控制的实现离不开最优化技术,最优化技术是研究和解决最优化问题的一门学科,它研究和解决如何从一切可能的方案中寻找最优的方案。也就是说,最优化技术是研究和解决如何将最优化问题表示为数学模型以及如何根据数学模型尽快求出其最优解这两大问题。一般而言,用最优化方法解决实际工程问题可分为三步进行:
      ①根据所提出的最优化问题,建立最优化问题的数学模型,确定变量,列出约束条件和目标函数;
      ②对所建立的数学模型进行具体分析和研究,选择合适的最优化方法;
      ③根据最优化方法的算法列出程序框图和编写程序,用计算机求出最优解,并对算法的收敛性、通用性、简便性、计算效率及误差等作出评价。
    [编辑本段]最优化问题的基本求解方法
    所谓最优化问题,就是寻找一个最优控制方案或最优控制规律,使系统能最优地达到预期的目标。在最优化问题的数学模型建立后,主要问题是如何通过不同的求解方法解决寻优问题。一般而言,最优化方式有离线静态优化方式和在线动态优化方式,而最优化问题的求解方法大致可分为四类:
      1.解析法
      对于目标函数及约束条件具有简单而明确的数学表达式的最优化问题,通常可采用解析法来解决。其求解方法是先按照函数极值的必要条件,用数学分析方法求出其解析解,然后按照充分条件或问题的实际物理意义间接地确定最优解。
      2.数值解法(直接法)
      对于目标函数较为复杂或无明确的数学表达式或无法用解析法求解的最优化问题,通常可采用直接法来解决。直接法的基本思想,就是用直接搜索方法经过一系列的迭代以产生点的序列,使之逐步接近到最优点。直接法常常是根据经验或实验而得到的。
      3.解析与数值相结合的寻优方法
      4.网络最优化方法
      这种方法以网络图作为数学模型,用图论方法进行搜索的寻优方法。
    [编辑本段]优化方法的新进展
    1.在线优化方法
      基于对象数学模型的离线优化方法是一种理想化方法。这是因为尽管工业过程(对象)被设计得按一定的正常工况连续运行,但是环境的变动、触媒和设备的老化以及原料成分的变动等因素形成了对工业过程的扰动,因此原来设计的工况条件就不是最优的。
      解决此类问题的常见方法。
      (1)局部参数最优化和整体最优化设计方法
      局部参数最优化方法的基本思想是:按照参考模型和被控过程输出之差来调整控制器可调参数,使输出误差平方的积分达到最小。这样可使被控过程和参考模型尽快地精确一致。
      此外,静态最优与动态最优相结合,可变局部最优为整体最优。整体最优由总体目标函数体现。整体最优由两部分组成:一种是静态最优(或离线最优),它的目标函数在一段时间或一定范围内是不变的;另一种是动态最优(或在线最优),它是指整个工业过程的最优化。工业过程是一个动态过程,要让一个系统始终处于最优化状态,必须随时排除各种干扰,协调好各局部优化参数或各现场控制器,从而达到整个系统最优。
      (2)预测控制中的滚动优化算法
      预测控制,又称基于模型的控制(Model-based Control),是70年代后期兴起的一种新型优化控制算法。但它与通常的离散最优控制算法不同,不是采用一个不变的全局优化目标,而是采用滚动式的有限时域优化策略。这意味着优化过程不是一次离线进行,而是反复在线进行的。这种有限化目标的局部性使其在理想情况下只能得到全局的次优解,但其滚动实施,却能顾及由于模型失配、时变、干扰等引起的不确定性,及时进行弥补,始终把新的优化建立在实际的基础之上,使控制保持实际上的最优。这种启发式的滚动优化策略,兼顾了对未来充分长时间内的理想优化和实际存在的不确定性的影响。在复杂的工业环境中,这比建立在理想条件下的最优控制更加实际有效。
      预测控制的优化模式具有鲜明的特点:它的离散形式的有限优化目标及滚动推进的实施过程,使得在控制的全过程中实现动态优化,而在控制的每一步实现静态参数优化。用这种思路,可以处理更复杂的情况,例如有约束、多目标、非线性乃至非参数等。吸取规划中的分层思想,还可把目标按其重要性及类型分层,实施不同层次的优化。显然,可把大系统控制中分层决策的思想和人工智能方法引入预测控制,形成多层智能预测控制的模式。这种多层智能预测控制方法的,将克服单一模型的预测控制算法的不足,是当前研究的重要方向之一。
      (3)稳态递阶控制
      对复杂的大工业过程(对象)的控制常采用集散控制模式。这时计算机在线稳态优化常采用递阶控制结构。这种结构既有控制层又有优化层,而优化层是一个两级结构,由局部决策单元级和协调器组成。其优化进程是:各决策单元并行响应子过程优化,由上一级决策单元(协调器)协调各优化进程,各决策单元和协调器通过相互迭代找到最优解。这里必须提到波兰学者Findeisen等所作出的重要贡献。
      由于工业过程较精确的数学模型不易求得,而且工业过程(对象)往往呈非线性及慢时变性,因此波兰学者Findesien提出:优化算法中采用模型求得的解是开环优化解。在大工业过程在线稳态控制的设计阶段,开环解可以用来决定最优工作点。但在实际使用上,这个解未必能使工业过程处于最优工况,相反还会违反约束。他们提出的全新思想是:从实际过程提取关联变量的稳态信息,并反馈至上一层协调器(全局反馈)或局部决策单元(局部反馈),并用它修正基于模型求出的的最优解,使之接近真实最优解。
      (4)系统优化和参数估计的集成研究方法
      稳态递阶控制的难点是,实际过程的输入输出特性是未知的。波兰学者提出的反馈校正机制,得到的只能是一个次优解。但其主要缺点在于一般很难准确估计次优解偏离最优解的程度,而且次优解的次优程度往往依赖于初始点的选取。一个自然的想法是将优化和参数估计分开处理并交替进行,直到迭代收敛到一个解。这样计算机的在线优化控制就包括两部分任务:在粗模型(粗模型通常是能够得到的)基础上的优化和设定点下的修正模型。这种方法称为系统优化和参数估计的集成研究方法。 (Integrated System Optimizationand Parameter Estimation)
      2.智能优化方法
      对于越来越多的复杂控制对象,一方面,人们所要求的控制性能不再单纯的局限于一两个指标;另一方面,上述各种优化方法,都是基于优化问题具有精确的数学模型基础之上的。但是许多实际工程问题是很难或不可能得到其精确的数学模型的。这就限制了上述经典优化方法的实际应用。随着模糊理论、神经网络等智能技术和计算机技术的发展。
      近年来,智能式的优化方法得到了重视和发展。
      (1)神经网络优化方法
      人工神经网络的研究起源于1943年和Mc Culloch和Pitts的工作。在优化方面,1982年Hopfield首先引入Lyapuov能量函数用于判断网络的稳定性,提出了Hopfield单层离散模型;Hopfield和Tank又发展了Hopfield单层连续模型。1986年,Hopfield和Tank将电子电路与Hopfield模型直接对应,实现了硬件模拟;Kennedy和Chua基于非线性电路理论提出了模拟电路模型,并使用系统微分方程的Lyapuov函数研究了电子电路的稳定性。这些工作都有力地促进了对神经网络优化方法的研究。
      根据神经网络理论,神经网络能量函数的极小点对应于系统的稳定平衡点,这样能量函数极小点的求解就转换为求解系统的稳定平衡点。随着时间的演化,网络的运动轨道在空间中总是朝着能量函数减小的方向运动,最终到达系统的平衡点——即能量函数的极小点。因此如果把神经网络动力系统的稳定吸引子考虑为适当的能量函数(或增广能量函数)的极小点,优化计算就从一初始点随着系统流到达某一极小点。如果将全局优化的概念用于控制系统,则控制系统的目标函数最终将达到希望的最小点。这就是神经优化计算的基本原理。
      与一般的数学规划一样,神经网络方法也存在着重分析次数较多的弱点,如何与结构的近似重分析等结构优化技术结合,减少迭代次数是今后进一步研究的方向之一。
      由于Hopfield模型能同时适用于离散问题和连续问题,因此可望有效地解决控制工程中普遍存在的混合离散变量非线性优化问题。
      (2)遗传算法
      遗传算法和遗传规划是一种新兴的搜索寻优技术。它仿效生物的进化和遗传,根据“优胜劣汰”原则,使所要求解决的问题从初始解逐步地逼近最优解。在许多情况下,遗传算法明显优于传统的优化方法。该算法允许所求解的问题是非线性的和不连续的,并能从整个可行解空间寻找全局最优解和次优解,避免只得到局部最优解。这样可以为我们提供更多有用的参考信息,以便更好地进行系统控制。同时其搜索最优解的过程是有指导性的,避免了一般优化算法的维数灾难问题。遗传算法的这些优点随着计算机技术的发展,在控制领域中将发挥越来越大的作用。
      目前的研究表明,遗传算法是一种具有很大潜力的结构优化方法。它用于解决非线性结构优化、动力结构优化、形状优化、拓扑优化等复杂优化问题,具有较大的优势。
      (3)模糊优化方法
      最优化问题一直是模糊理论应用最为广泛的领域之一。
      自从Bellman和Zadeh在 70年代初期对这一研究作出开创性工作以来,其主要研究集中在一般意义下的理论研究、模糊线性规划、多目标模糊规划、以及模糊规划理论在随机规划及许多实际问题中的应用。主要的研究方法是利用模糊集的a截集或确定模糊集的隶属函数将模糊规划问题转化为经典的规划问题来解决。
      模糊优化方法与普通优化方法的要求相同,仍然是寻求一个控制方案(即一组设计变量),满足给定的约束条件,并使目标函数为最优值,区别仅在于其中包含有模糊因素。普通优化可以归结为求解一个普通数学规划问题,模糊规划则可归结为求解一个模糊数学规划(fuzzymathematicalprogramming)问题。包含控制变量、目标函数和约束条件,但其中控制变量、目标函数和约束条件可能都是模糊的,也可能某一方面是模糊的而其它方面是清晰的。例如模糊约束的优化设计问题中模糊因素是包含在约束条件(如几何约束、性能约束和人文约束等)中的。求解模糊数学规划问题的基本思想是把模糊优化转化为非模糊优化即普通优化问题。方法可分为两类:一类是给出模糊解(fuzzysolution);另一类是给出一个特定的清晰解(crispsolution)。必须指出,上述解法都是对于模糊线性规划(fuzzylinearprogramming)提出的。然而大多数实际工程问题是由非线形模糊规划(fuzzynonlinearprogramming)加以描述的。于是有人提出了水平截集法、限界搜索法和最大水平法等,并取得了一些可喜的成果。
      在控制领域中,模糊控制与自学习算法、模糊控制与遗传算法相融合,通过改进学习算法、遗传算法,按给定优化性能指标,对被控对象进行逐步寻优学习,从而能够有效地确定模糊控制器的结构和参数。

    09-10-01 | 添加评论 | 打赏

    评论读取中....

精华知识
更多  
意见反馈 帮助